
3: THE SHANNON SAMPLING THEOREM

STEVEN HEILMAN

1. Introduction

In this final set of notes, we would like to end where we began. In the first set of notes,
we mentioned that mathematics could be used to show how CDs and MP3s can reproduce
our music well, even though the file sizes of MP3s are relatively small. In this set of notes,
we attempt to describe how this is possible. Surprisingly, the exponential function will play
a key role. We assume familiarity with differentiation and integration theory.

We begin our discussion with Fourier series. In the class, we have familiarized ourselves
with infinite series. Some of the most interesting infinite series are associated to functions
f : [0, 1] → R. In particular, we can encode a lot of information of a function f : [0, 1] → R
via a certain infinite series, which is called the Fourier series of f . It is this series that will
lead us to an analysis of CDs and MP3s.

2. Review for the Final Exam

Before the discussion of Fourier series, I would like to review the types of proofs that we
have seen in this course. I would also like to review some ways of deciding which proof
we want to use. Let P,Q,R, S, T be statements, let A be a set, for a ∈ A let P (a) be a
statement, and for n ∈ N, let P (n) be a statement.

Type of proof Typical Appearance Typical proof method

Direct Proof P ⇒ Q Find e.g. R, S, T , show P ⇒ R⇒ S ⇒ T ⇒ Q.
Proof by cases ∀ a ∈ A, prove P (a).

There are too many
different things to do
for a direct proof.

There are a few disjoint subsets of A, e.g.
A1, A2, A3 such that A1 ∪ A2 ∪ A3 = A, and
it seems easier to prove P (a) separately for
a ∈ A1, a ∈ A2, a ∈ A3.

Proof by contra-
positive

P ⇒ Q seems hard, so
prove ∼ Q⇒∼ P .

Do a direct proof of ∼ Q⇒∼ P .

Proof by contra-
diction

Prove P . A direct
proof of P seems hard.

Assume that ∼ P holds, derive some contradic-
tion. Due to the contradiction, P must hold.

Disproof by
counterexample

∼(∀ a ∈ A, P (a)), i.e.
∃ a ∈ A, ∼ P (a)

Find a ∈ A such that ∼ P (a) holds.

Inductive proof ∀ n ∈ N, P (n) holds Prove P (1). Prove: ∀ n ∈ N, P (n)⇒ P (n+ 1).
Therefore, P (1)⇒ P (2)⇒ P (3)⇒ · · · .

Table 1. Different Proof Strategies
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Exercise 2.1. Using the homeworks and the practice final, review particular examples where
the above strategies are used.

3. Primer: Fourier analysis, Poisson Summation

Let f : [0, 1] → R be a real valued function such that f(0) = f(1). Below, we always
assume that f is a smooth function. That is, ∀ n ∈ N, the nth derivative of f , dnf(x)/dxn

exists and is continuous, and ∃ Cn ∈ R, Cn <∞ with |dnf(x)/dxn| ≤ Cn, ∀ x ∈ [0, 1]. Here
Cn is allowed to depend on f . The smoothness of f will eliminate some technicalities in our
presentation. Occasionally, we will not mention when the smoothness of f is used. As an
exercise, try to find where the smoothness of f is used. Let n ∈ Z, and define a sequence
. . . , a−2, a−1, a0, a1, . . . by the following formula

an =

∫ 1

0

f(x)e−2πinxdx =

(∫ 1

0

f(x) cos(−2πnx)dx

)
+ i

(∫ 1

0

f(x) sin(−2πnx)dx

)
Define the Fourier series of f to be ∑

n∈Z

ane
2πinx

The following theorem shows that a smooth function is equal to its Fourier series. In other
words, we can recover any value of f from a specific infinite sequence of numbers. Here we
can already see that these results may be useful for storing information about an audio file.
Suppose f : [0, 1] → R represents a sound wave. That is, for x ∈ [0, 1], f(x) is equal to
the amplitude of the sound wave at time x. It seems difficult to store a function f , but it
seems easier to store a sequence of numbers. Ideally, we would only store a finite sequence
of numbers, and then recover the function f reasonably well. This strategy can actually be
carried out, and it will be described in more detail in Section 6.

The following theorem is relatively easy to prove, since we have assumed that f is a smooth
function. However, if f is not smooth, many issues arise.

Theorem 3.1. Let f : [0, 1]→ R be smooth, with f(0) = f(1). Define an as above. Then

f(x) =
∑
n∈Z

ane
2πinx

Proof. Since an =
∫ 1

0
f(x)e−2πinxdx and f(0) = f(1), we can integrate by parts twice to get

an =

∫ 1

0

f(x)
d

dx

(
1

−2πin
e−2πinx

)
dx =

1

2πin

∫ 1

0

f ′(x)e−2πinxdx

an =
1

(2πin)2

∫ 1

0

f ′′(x)e−2πinxdx

Recall that |e−2πinx| = 1. So, taking absolute values of both sides and then moving the
absolute values inside the integral gives

|an| ≤
1

4π2n2

∫ 1

0

|f ′′(x)| dx ≤ 1

n2

C2

4π2
(∗)
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For N ∈ N, the definition of an shows that

N∑
n=−N

ane
2πinx =

N∑
n=−N

(∫ 1

0

f(y)e−2πinydy

)
e2πinx =

∫ 1

0

f(y)

(
N∑

n=−N

e2πin(x−y)

)
dy (∗∗)

Let x ∈ (0, 1). Using the formula for summation of geometric series, the identity sin(x) =
(eix − e−ix)/2i, and the formula sin(a+ b) = sin(a) cos(b) + cos(a) sin(b), a, b ∈ R,

N∑
n=−N

e2πinx =
N∑
n=0

(e2πix)n +
N∑
n=1

(e−2πix)n

=
1− e2πi(N+1)x

1− e2πix
+
e−2πiNx − 1

1− e2πix

=
e−2πiNx − e2πi(N+1)x

1− e2πix
· e
−πix

e−πix
=
e−2πi(N+1/2)x − e2πi(N+1/2)x

e−πix − eπix

=
e2πi(N+1/2)x − e−2πi(N+1/2)x

2i

2i

eπix − e−πix
=

sin(π(2N + 1)x)

sin(πx)

=
sin(2πNx) cos(πx)

sin πx
+ cos(2πNx) (†)

Let N ∈ N. For n 6= 0, n ∈ N,
∫ 1

0
e2πinxdx = 1

2πin
[e2πinx]x=1

x=0 = 1
2πin

[1 − 1] = 0. So,∫ 1

0

∑N
n=−N e

2πinxdx =
∫ 1

0
dx = 1. Fix x ∈ (0, 1). For y ∈ [0, 1], y 6= x, let F (y) = (f(x) −

f(x− y))/y, and for y = x, let F (y) = f ′(x). Since f is smooth, F is also smooth. Applying

the equality
∫ 1

0

∑N
n=−N e

2πinxdx = 1 along with (∗∗),

f(x)−
N∑

n=−N

ane
2πinx = f(x)

∫ 1

0

N∑
n=−N

e2πinydy −
∫ 1

0

f(y)

(
N∑

n=−N

e2πin(x−y)

)
dy

= f(x)

∫ 1

0

N∑
n=−N

e2πinydy −
∫ 1

0

f(x− y)

(
N∑

n=−N

e2πiny

)
dy , changing variables

=

∫ 1

0

[f(x)− f(x− y)]
N∑

n=−N

e2πiny · y
y
dy

=

∫ 1

0

F (y)
y

sin(πy)
cos(πy) sin(2πNy) +

∫ 1

0

F (y)y cos(2πNy)dy , by (†)

Now, F (y) y
sin(πy)

cos(πy) is a smooth function, and F (y)y is a smooth function. So, inte-

grating by parts twice as in (∗), there exists C > 0 such that∣∣∣∣∣f(x)−
N∑

n=−N

ane
2πinx

∣∣∣∣∣ ≤ C

N2

Letting N →∞ completes the Theorem. �
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Let f : R → R be a real valued function. Throughout these notes, we assume that f is
a smooth, rapidly decaying function. That is, ∀ n, j ∈ N, ∃ Cn,j ∈ R such that the nth

derivative of f , dnf(x)/dxn, exists and is continuous, and

∀x ∈ R,
∣∣∣∣dnf(x)

dxn

∣∣∣∣ |x|j ≤ Cn,j

Here Cn,j is allowed to depend on the function f . This strong assumption on f is not really
needed, but it eliminates some technicalities in the presentation below.

Let ξ ∈ R. Given f : R→ R, we define the Fourier Transform of f by the formula

f̂(ξ) =

∫
R
f(x)e−2πixξdx =

(∫
R
f(x) cos(−2πxξ)dx

)
+ i

(∫
R
f(x) sin(−2πxξ)dx

)
To get a handle on this object, we consider the following example.

Example 3.2. For x ∈ R, x ∈ [−1/2, 1/2], let h(x) = 1. For x ∈ R, x /∈ [−1/2, 1/2], let

h(x) = 0. We compute ĥ(ξ).

ĥ(ξ) =

∫
R
h(x)e−2πixξdx =

∫ 1/2

−1/2
e−2πixξdx =

1

−2πiξ
[e−2πixξ]

x=1/2
x=−1/2

=
eπiξ − e−πiξ

2πiξ
=

sin(πξ)

πξ

So, h is just a flat function on the interval [−1/2, 1/2], and ĥ is a wavy function that
somewhat resembles the function 1/ |ξ|, for large ξ.

The following two theorems connect f and f̂ . Below, we will think of f as our sound

wave, and f̂ will contain the frequency information of the sound wave f . In order to store
the sound wave f in an audio file, it is useful to pass back and forth between the amplitude

function f , and the frequency function f̂ . Therefore, being able to relate both f and f̂ will
be very useful, especially in Section 5.

Theorem 3.3. (Poisson Summation Formula) Let x ∈ R. Then∑
n∈Z

f(x+ n) =
∑
n∈Z

f̂(n)e2πinx

Proof. Let k ∈ Z. Note that e2πik = (cos(2πk)) + i(sin 2πk) = 1. For x ∈ [0, 1], let
F (x) =

∑
n∈Z f(x+ n). Then F : [0, 1]→ R, F (0) = F (1), and F is smooth. Observe∫ 1

0

F (x)e−2πinxdx =

∫ 1

0

∑
n∈Z

f(x+ n)e−2πinxdx =
∑
n∈Z

∫ 1

0

f(x+ n)e−2πinxdx

=
∑
n∈Z

∫ n+1

n

f(x)e−2πin(x−n)dx , changing variables

=
∑
n∈Z

∫ n+1

n

f(x)e−2πinxe2πin
2

dx =
∑
n∈Z

∫ n+1

n

f(x)e−2πinxdx

=

∫
R
f(x)e−2πinxdx = f̂(n)
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Therefore, applying Theorem 3.1 to F ,∑
n∈Z

f(x+ n) = F (x) =
∑
n∈Z

(∫ 1

0

F (y)e−2πinydy

)
e2πinx =

∑
n∈Z

f̂(n)e2πinx

�

The following proof skips some details. Try to find out where these details are skipped.
These details can be filled in, but they require techniques beyond this course.

Theorem 3.4. (Fourier inversion)

f(x) =

∫
R
f̂(ξ)e2πixξdξ

Proof. Let ε > 0, and let g(x) = (1/ε)e−πx
2/ε2 . One can compute that ĝ(ξ) = e−πε

2x2 , and̂̂g(x) = g(x). Also, for h(x) = ĝ(x) one can show that
∫
R f(x)ĥ(x)dx =

∫
R f̂(x)h(x)dx. That

is,
∫
R f(x)g(x) =

∫
R f̂(x)ĝ(x), so∫

R
f(x)

1

ε
e−πx

2/ε2dx =

∫
R
f̂(ξ)e−πε

2ξ2dξ (∗)

Letting ε go to zero, the right side of (∗) becomes
∫
R f̂(ξ)dξ. As ε goes to zero, 1

ε
e−πξ

2/ε2

becomes more and more localized around the point ξ = 0, so the left side of (∗) becomes
f(0) as ε goes to zero. That is,

f(0) =

∫
R
f̂(ξ)dξ (∗∗)

Finally, for x ∈ R fixed, apply (∗∗) with u(y) = f(x + y) in place of f(x). By chang-

ing variables, note that û(ξ) =
∫
R f(x + y)e−2πiyξdy =

∫
R f(y)e−2πi(y−x)ξdx = e2πixξf̂(ξ).

Therefore, (∗∗) applied to u says

f(x) = u(0) =

∫
R
û(ξ)dξ =

∫
R
f̂(ξ)e2πixξdξ

�

4. An Aside: The Heisenberg Uncertainty Principle

In this section, f and g are smooth rapidly decaying functions, f, g : R→ R.

Theorem 4.1. (Cauchy-Schwarz)∫
R
f(x)g(x)dx ≤

(∫
R
|f(x)|2 dx

)1/2(∫
R
|g(x)|2 dx

)1/2
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Proof. Let δ = −(
∫
R f(x)g(x)dx)/(

∫
R |g(x)|2 dx). Then

0 ≤
∫
R
(f(y) + δg(y))2dy =

∫
R
|f(y)|2 dy + δ2

∫
R
|g(y)|2 dy + 2δ

∫
R
f(y)g(y)dy

=

∫
R
|f(y)|2 dy +

(
∫
R f(x)g(x)dx)2∫
R |g(x)|2 dx

− 2
(
∫
R f(x)g(x)dx)2∫
R |g(x)|2 dx

=

∫
R
|f(y)|2 dy −

(
∫
R f(x)g(x)dx)2∫
R |g(x)|2 dx

Therefore, (
∫
R f(x)g(x)dx)2 ≤ (

∫
R f(x)dx)(

∫
R g(x)dx), as desired. �

Consider the following binary operation on functions f, g : R→ R

(f ∗ g)(x) =

∫
R
f(x− y)g(y)dy

Exercise 4.2. Show that f∗g is a commutative binary operation, i.e. show f∗g(x) = g∗f(x).

Theorem 4.3.
f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ)

Proof.

f̂ ∗ g(ξ) =

∫
R

(∫
R
f(x− y)g(y)dy

)
e−2πixξdx =

∫
R
g(y)

(∫
R
f(x− y)e−2πixξdx

)
dy

=

∫
R
g(y)

(∫
R
f(x)e−2πi(x+y)ξdx

)
dy =

∫
R
g(y)e−2πiyξdy

∫
R
f(x)e−2πixξdx = ĝ(ξ)f̂(ξ)

�

Theorem 4.4. (Plancherel)
∫
R |f(x)|2 dx =

∫
R |f̂(ξ)|2dξ

Proof. Let g(x) = f(−x). Then ĝ(ξ) =
∫
R f(−x)e−2πixξdx =

∫
R f(x)e−2πixξdx = f̂(ξ). Let

h(x) = f ∗ g(x). By Theorem 4.3 and the previous sentence, ĥ(ξ) = f̂(ξ)ĝ(ξ) = f̂(ξ)f̂(ξ) =

|f̂(ξ)|2. Now, applying Theorem 3.4 to h,∫
R
|f̂(ξ)|2dξ =

∫
R
ĥ(ξ)dξ = h(0) =

∫
R
f(x)g(0− x)dx , by Exercise 4.2

=

∫
R
f(x)f(x)dx =

∫
R
|f(x)|2 dx

�

Theorem 4.5. (Heisenberg Uncertainty Principle) Suppose
∫
R |f(x)|2 dx = 1. Then(∫

R
x2 |f(x)|2 dx

)(∫
R
ξ2|f̂(ξ)|2dξ

)
≥ 1

16π2

Proof. From Fourier inversion, f(x) =
∫
R f̂(ξ)e−2πixξdξ, so f ′(x) =

∫
R(−2πiξ)f̂(ξ)e−2πixξdξ,

and using Fourier inversion again, (̂f ′)(ξ) = (−2πiξ)f̂(ξ). So, by Theorem 4.4,∫
R
|f ′(x)|2 dx =

∫
R
|f̂ ′(ξ)|2dξ = 4π2

∫
R
ξ2|f̂(ξ)|2dξ (∗)
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We now begin with the assumption
∫
R |f(x)|2 dx = 1 and integrate by parts.

1 =

∫
R
|f(x)|2 dx = −

∫
R
x
d

dx
|f(x)|2 dx = −

∫
R
x
d

dx
(f(x)f(x))dx

= −
∫
R
(xf ′(x)f(x) + xf ′(x)f(x))dx

Taking absolute values inside the integral, then applying Theorem 4.1 and (∗),

1 ≤ 2

∫
R
|x| |f(x)| |f ′(x)| dx ≤ 2

(∫
R
x2 |f(x)|2 dx

)1/2(∫
R
|f ′(x)|2 dx

)1/2

= 4π

(∫
R
x2 |f(x)|2 dx

)1/2(∫
R
ξ2|f̂(ξ)|2dξ

)1/2

�

5. The Shannon Sampling Theorem, or how CDs and MP3s work

Theorem 5.1. Let A ∈ R, A > 0. Suppose f̂(ξ) = 0 for {ξ ∈ R : |ξ| < A}. Then f(x) can be
recovered from its values at the following discrete sets of points, {y ∈ R : y = n/2A, n ∈ Z}.
More specifically, f can be written in the following way

f(x) =
∑
n∈Z

f
( n

2A

) sin(π(2Ax− n))

π(2Ax− n)

For simplicity of presentation, we will prove the theorem only in the case A = 1/2. We
leave it as an exercise to adjust this proof to apply to the more general case.

Theorem 5.2. Suppose f̂(ξ) = 0 for {ξ ∈ R : |ξ| < 1/2}. Then f(x) can be recovered from
its values at the integers. More specifically, f can be written in the following way

f(x) =
∑
n∈Z

f(n)
sin(π(x− n))

π(x− n)

Proof. Let g(x) = f̂(x). From Theorem 3.4, f̂(ξ) = g(ξ) =
∫
R ĝ(x)e2πixξdx. Since f̂(ξ) =∫

R f(x)e−2πixξdx, we conclude that
∫
R[ ĝ(x)−f(−x)]e2πixξ = 0. From Theorem 3.4 again, we

conclude that ĝ(x) = f(−x). Now, if ξ ∈ R, the given information says
∑

n∈Z f̂(ξ+n) = f̂(ξ).

So, applying Theorem 3.3 to g(x) = f̂(x) and using ĝ(x) = f(−x),

f̂(ξ) =
∑
n∈Z

f̂(ξ + n) =
∑
n∈Z

f(−n)e2πinξ =
∑
n∈Z

f(n)e−2πinξ

Define h as in Example 3.2. Then f̂(ξ) = h(ξ)
∑

n∈Z f(n)e−2πinξ, so by Theorem 3.4 and
Example 3.2,

f(x) =

∫
R
f̂(ξ)e2πixξdξ =

∑
n∈Z

f(n)

∫
R
h(ξ)e2πiξ(x−n) =

∑
n∈Z

f(n)
sin(π(x− n))

π(x− n)

�
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6. Conclusion

We can now finally describe how CDs and MP3s work. Suppose f : R → R represents
the amplitude of a sound wave. That is, for some time t ∈ R, f(t) denotes the height of

the sound wave f . The Fourier Transform f̂(ξ) represents the frequency of the sound wave

f . That is, f̂(ξ) is large if f is oscillating at the frequency ξ. Humans only hear sounds at

frequencies less than about 20, 000 Hertz. So, we may conservatively assume that f̂(ξ) = 0
on the set {ξ ∈ R : |ξ| > 22, 000}. Then Theorem 5.1 says that, if we sample the height f
around 44, 000 times per second (with 1/44, 000 seconds in between each sample), then we
can recover f exactly. In particular, on the CD we can store the samples of the function f at
these discrete times. We have just described how CDs store and recover sound information.

Now, MP3s take a much different approach to information storage. For CDs, we store
samples of the height of the sound wave itself. For MP3s, we store information about the
frequencies of the sound wave. The first step is, we consider the sound wave f in separate
blocks, say of width .1 seconds. Fr x ∈ R, suppose h(x) = 1 for x ∈ [0, .1], and h(x) = 0
otherwise. Now, consider the Fourier transform of fh. (MP3s do not exactly use the Fourier
transform, but they use something similar.) Recall that the Fourier transform of fh expresses
how much of a certain frequency fh has. For typical soundwaves, fh will only have a few

frequencies that are large. That is, for typical soundwaves, f̂h(ξ) will be large for very few
values of ξ ∈ R. So, the MP3 only stores the large frequencies, and it ignores the small
ones. (The exact way that we implement this procedure affects the size of the MP3 and the
quality of the sound. If we throw out too many frequencies, the sound will be terrible. If we
do not throw out many frequencies, the file size will be large.) It turns out that, since we

store most of the information about f̂h, we can apply Fourier inversion to the frequencies
that we stored in the MP3, and we will recover fh pretty well. (Once again, the exact way
that we threw out certain frequencies will affect how well we can recover fh. Quantifying
this procedure uses many of the ideas that we presented above.)

In summary, the CD stores the values of the physical sound wave, and the MP3 stores
(most of) the values of the frequencies of the sound wave. Actually, JPEGs use a similar
strategy as MP3s to store visual information. And the transmission of cell phone voice
signals and YouTube videos also use schemes similar to the one we described for MP3s.
The rigorous foundations of sonic and visual compression serve as only a few of the many
examples in which mathematical proofs are vital in the sciences and in our everyday lives.

Courant Institute, New York University, New York NY 10012
E-mail address: heilman@cims.nyu.edu
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