Problem Set 1

1. (i) Prove that for any sets A, B, and C we have

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C), \quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

These identities may be interpreted as the mutual distributivities of \cap and \cup.
Hint. You can use e.g. a Venn diagram, but you should understand why this constitutes a rigorous proof.
(ii) Let S be an index set and A_{s} a family of subsets of some set X. Prove De Morgan's laws

$$
\left(\bigcup_{s \in S} A_{s}\right)^{c}=\bigcap_{s \in S} A_{s}^{c}, \quad\left(\bigcap_{s \in S} A_{s}\right)^{c}=\bigcup_{s \in S} A_{s}^{c}
$$

where $A^{c}:=X \backslash A$ denotes the complement of A.
2. Show that the scalar product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{n} satisfies the parallelogram law or polarization identity

$$
|x+y|^{2}+|x-y|^{2}=2|x|^{2}+2|y|^{2} .
$$

What does this identity mean geometrically for the parallelogram spanned by x and y (i.e. the parallelogram with vertices $0, x, y$, and $x+y)$?
3. (i) Prove that if A and B are closed then $A \cup B$ is also closed. Find an example that shows that infinite unions of closed sets are not necessarily closed.
(ii) Prove that if for each $s \in S$ the set A_{s} is closed then $\bigcap_{s \in S} A_{s}$ is also closed.
4. For any function $f: X \rightarrow Y$ and $A \subset Y$ recall the preimage map $f^{-1}(A):=\{x \in X: f(x) \in A\}$.
(i) Show that

$$
f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B), \quad f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B) .
$$

(ii) Show that

$$
f(A \cup B)=f(A) \cup f(B), \quad f(A \cap B) \subset f(A) \cap f(B)
$$

Find an example to show that in general $f(A \cap B)$ is not equal to $f(A) \cap f(B)$. Show that if f is injective (or one-to-one) then we have

$$
f(A \cap B)=f(A) \cap f(B)
$$

Hint. It may be helpful to write for instance

$$
f(A \cap B)=\{y \in Y: \exists x \in A \cap B: y=f(x)\} .
$$

5. (i) Let $A_{1}, A_{2}, A_{3}, \ldots$ be subsets of some set X, and define

$$
U:=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}, \quad V:=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} .
$$

Which one of $U \subset V$ and $V \subset U$ is true? Prove your claim.
(ii) Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence of functions on some set X, and f a function on X. Show that the set of convergence

$$
C:=\left\{x \in X: \lim _{k \rightarrow \infty} f_{k}(x)=f(x)\right\}
$$

may be written as

$$
C=\bigcap_{l=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty}\left\{x \in X:\left|f_{k}(x)-f(x)\right| \leqslant \frac{1}{l}\right\}
$$

6. Prove that a sequence in \mathbb{R}^{n} converges if and only if all of its components converge.
7. The closure of a set A is by definition

$$
\bar{A}:=\bigcap_{\substack{B \supset A: \\ B \text { closed }}} B
$$

(i) Prove that \bar{A} is closed. Hence, \bar{A} is the smallest closed set containing A.
(ii) Recall that by definition x is a limit point of A if for all $r>0$ the set $B_{r}(x)$ contains a point of A that is not x. Show that

$$
\bar{A}=A \cup\{\text { limit points of } A\}
$$

Hints. This is the same as proving $\bar{A}=L$ where

$$
L:=\left\{\lim _{k \rightarrow \infty} x_{k}:\left(x_{k}\right)_{k \in \mathbb{N}} \text { is a convergent sequence with } x_{k} \in A \forall k \in \mathbb{N}\right\}
$$

(why?). In order to prove the equality, you have to prove that $\bar{A} \subset L$ and $L \subset \bar{A}$. For the first inclusion, take $y \in \bar{A}$ and prove, by contradiction (i.e. using the method of indirect proof) that for all $r>0$ we have $B_{r}(y) \cap A \neq \emptyset$. Once this is proved, it will easily follow that $y \in L$.
(iii) Show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$ and $\overline{A \cap B} \subset \bar{A} \cap \bar{B}$.

Hint. Use the characterization of (ii).
(iv) Find an example that shows that $\overline{A \cap B} \neq \bar{A} \cap \bar{B}$ in general.
8. (i) Prove the following characterization of continuity, which is a (stronger) variant of the one given in class: a function f is continuous at a if and only if every sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ that converges to a has a subsequence $\left(x_{k_{j}}\right)_{j \in \mathbb{N}}$ such that $\lim _{j \rightarrow \infty} f\left(x_{k_{j}}\right)=f(a)$.
Hint. The "only if" direction follows from the characterization of continuity given in class. In order to prove the "if" direction, do an indirect proof by assuming that f is not continuous at a.
(ii) Suppose that f is a continuous, bijective function defined on a compact set A. Show that f^{-1} is also continuous. (A bijective continuous function whose inverse is also continuous is called a Homeomorphism.)
Hint. By (i), it suffices to show (why?) that if $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a sequence in A satisfying $f\left(x_{k}\right) \rightarrow f(x)$ for some $x \in A$, then there exists a subsequence $\left(x_{k_{j}}\right)_{j \in \mathbb{N}}$ such that $x_{k_{j}} \rightarrow x$.
(iii) Can you find an example of a continuous, bijective function f such that f^{-1} is not continuous?

Due: Thursday, February 14, in class.

