Analysis 2 Antti Knowles

Problem Set 1

1. (i) Prove that for any sets A, B, and C we have

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \qquad A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

These identities may be interpreted as the mutual distributivities of \cap and \cup .

Hint. You can use e.g. a Venn diagram, but you should understand why this constitutes a rigorous proof.

(ii) Let S be an index set and A_s a family of subsets of some set X. Prove De Morgan's laws

$$\left(\bigcup_{s\in S} A_s\right)^c = \bigcap_{s\in S} A_s^c, \qquad \left(\bigcap_{s\in S} A_s\right)^c = \bigcup_{s\in S} A_s^c,$$

where $A^c := X \setminus A$ denotes the complement of A.

2. Show that the scalar product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^n satisfies the parallelogram law or polarization identity

$$|x+y|^2 + |x-y|^2 = 2|x|^2 + 2|y|^2$$
.

What does this identity mean geometrically for the parallelogram spanned by x and y (i.e. the parallelogram with vertices 0, x, y, and x + y)?

- **3.** (i) Prove that if A and B are closed then $A \cup B$ is also closed. Find an example that shows that infinite unions of closed sets are not necessarily closed.
 - (ii) Prove that if for each $s \in S$ the set A_s is closed then $\bigcap_{s \in S} A_s$ is also closed.
- **4.** For any function $f: X \to Y$ and $A \subset Y$ recall the preimage map $f^{-1}(A) := \{x \in X : f(x) \in A\}$.
 - (i) Show that

$$f^{-1}(A\cap B) \ = \ f^{-1}(A)\cap f^{-1}(B) \,, \qquad f^{-1}(A\cup B) \ = \ f^{-1}(A)\cup f^{-1}(B) \,.$$

(ii) Show that

$$f(A \cup B) = f(A) \cup f(B), \qquad f(A \cap B) \subset f(A) \cap f(B).$$

Find an example to show that in general $f(A \cap B)$ is not equal to $f(A) \cap f(B)$. Show that if f is injective (or one-to-one) then we have

$$f(A \cap B) = f(A) \cap f(B)$$
.

Hint. It may be helpful to write for instance

$$f(A \cap B) = \left\{ y \in Y : \exists x \in A \cap B : y = f(x) \right\}.$$

5. (i) Let A_1, A_2, A_3, \ldots be subsets of some set X, and define

$$U := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k, \qquad V := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Which one of $U \subset V$ and $V \subset U$ is true? Prove your claim.

(ii) Let $(f_k)_{k\in\mathbb{N}}$ be a sequence of functions on some set X, and f a function on X. Show that the set of convergence

$$C := \left\{ x \in X : \lim_{k \to \infty} f_k(x) = f(x) \right\}$$

may be written as

$$C = \bigcap_{l=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \left\{ x \in X : |f_k(x) - f(x)| \leqslant \frac{1}{l} \right\}.$$

- **6.** Prove that a sequence in \mathbb{R}^n converges if and only if all of its components converge.
- 7. The *closure* of a set A is by definition

$$\overline{A} := \bigcap_{\substack{B\supset A:\ B \text{ closed}}} B.$$

- (i) Prove that \overline{A} is closed. Hence, \overline{A} is the smallest closed set containing A.
- (ii) Recall that by definition x is a *limit point* of A if for all r > 0 the set $B_r(x)$ contains a point of A that is not x. Show that

$$\overline{A} \ = \ A \cup \{ \text{limit points of} \ A \} \, .$$

Hints. This is the same as proving $\overline{A} = L$ where

$$L \ := \ \left\{ \lim_{k \to \infty} x_k : (x_k)_{k \in \mathbb{N}} \text{ is a convergent sequence with } x_k \in A \ \forall k \in \mathbb{N} \right\}$$

(why?). In order to prove the equality, you have to prove that $\overline{A} \subset L$ and $L \subset \overline{A}$. For the first inclusion, take $y \in \overline{A}$ and prove, by contradiction (i.e. using the method of indirect proof) that for all r > 0 we have $B_r(y) \cap A \neq \emptyset$. Once this is proved, it will easily follow that $y \in L$.

- (iii) Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$ and $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. *Hint.* Use the characterization of (ii).
- (iv) Find an example that shows that $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$ in general.

- 8. (i) Prove the following characterization of continuity, which is a (stronger) variant of the one given in class: a function f is continuous at a if and only if every sequence (x_k)_{k∈N} that converges to a has a subsequence (x_{kj})_{j∈N} such that lim_{j→∞} f(x_{kj}) = f(a).
 Hint. The "only if" direction follows from the characterization of continuity given in class. In order to prove the "if" direction, do an indirect proof by assuming that f is not continuous at a.
 - (ii) Suppose that f is a continuous, bijective function defined on a compact set A. Show that f^{-1} is also continuous. (A bijective continuous function whose inverse is also continuous is called a *Homeomorphism*.)

 Hint. By (i), it suffices to show (why?) that if $(x_k)_{k\in\mathbb{N}}$ is a sequence in A satisfying $f(x_k) \to f(x)$ for some $x \in A$, then there exists a subsequence $(x_{k_j})_{j\in\mathbb{N}}$ such that $x_{k_j} \to x$.
 - (iii) Can you find an example of a continuous, bijective function f such that f^{-1} is not continuous?

Due: Thursday, February 14, in class.