Analysis 2 Antti Knowles

PROBLEM SET 2

- 1. Prove that a uniformly continuous function is continuous.
- 2. Does the function

$$f(x,y) = \frac{x^3 - y^3}{|x - y| + y^2}$$

have a limit as $(x,y) \to 0$? If yes, give the limit. Answer the same question for the function

$$f(x,y) = \left(x+y^3, x+\frac{x}{x^2+y^2}\right).$$

- **3.** Recall the topological characterization of continuity: f is continuous if and only if $f^{-1}(U)$ is open whenever U is open. Here f^{-1} cannot be replaced with f: find a continuous function f and an open set U such that f(U) is not open.
- **4.** A function $f:D\to\mathbb{R}^m$ for $D\subset\mathbb{R}^n$ is called *Lipschitz continuous* if there exists a constant L such that

$$|f(x) - f(y)| \le L|x - y| \quad \forall x, y \in D.$$

The constant L is called the Lipschitz constant of f.

- (i) Prove that a Lipschitz continuous function is uniformly continuous.
- (ii) Find an example of a uniformly continuous function that is not Lipschitz continuous.
- (iii) Prove that the distance (or norm) $x \mapsto |x|$ is a Lipschitz continuous function from \mathbb{R}^n
- (iv) Prove that addition $(x,y) \mapsto x+y$ is a Lipschitz continuous function from $\mathbb{R}^n \times \mathbb{R}^n$ to
- (v) Prove that the scalar product $(x,y) \mapsto \langle x,y \rangle$ is a Lipschitz continuous function from $D \times D$ to \mathbb{R} for any bounded domain D.
- **5.** The notion of *Hölder continuity* is a generalization of Lipschitz continuity. Let $\alpha \geq 0$. We say that $f: D \to \mathbb{R}^m$ is α -Hölder continuous if there exists a constant L such that

$$|f(x) - f(y)| \le L|x - y|^{\alpha} \quad \forall x, y \in D.$$

- (i) What does this condition mean if $\alpha = 1$? What about $\alpha = 0$?
- (ii) Prove that an α -Hölder continuous function is uniformly continuous provided $\alpha > 0$.

- (iii) Prove that if D is bounded, $\alpha \leqslant \beta$, and f is β -Hölder continuous, then f is α -Hölder continuous.
- (iv) Prove that if f is α -Hölder continuous for $\alpha > 1$, then f is constant. Hints. Pick $x, y \in D$ and estimate |f(x) - f(y)| by choosing a path (x_0, \ldots, x_n) defined by

$$x_i := x + \frac{i}{n}(y-x)$$
.

Write f(y) - f(x) as a telescoping sum. In the end take the limit $n \to \infty$.

- **6.** A subset $A \subset \mathbb{R}^n$ is dense if for every $x \in \mathbb{R}^n$ the set $A \cap B_{\varepsilon}(x)$ is not empty.
 - (i) Prove that \mathbb{Q} is dense in \mathbb{R} .
 - (ii) Using (i), prove that \mathbb{Q}^n is dense in \mathbb{R}^n .
 - (iii) Let f and g be continuous functions and A be a dense set in \mathbb{R}^n . Prove that if f and g coincide on A then f = g (i.e. they coincide on \mathbb{R}^n).
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be defined through

$$f(x) := \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Show that f does not have a limit at any point in \mathbb{R} .

8. Recall that the Bolzano-Weierstrass theorem states that any bounded sequence in \mathbb{R} has a convergent subsequence. Use this result to prove that any bounded sequence in \mathbb{R}^n has a convergent subsequence. (This fact was used in class in the proof of the sequential characterization of compactness.)

Hint. Let $(x_k)_{k\in\mathbb{N}}$ be such a sequence, and apply the one-dimensional result to its components x_k^i , where $i=1,\ldots,n$. You will have to extract n decreasing subsequences.

- **9.** Recall that the Heine-Borel characterization of compactness says that A is compact if and only if for any family of open sets $(A_s)_{s\in S}$ that cover A (an "open cover") there exists a finite subset $S_0 \subset S$ such that the finite family of open sets $(A_s)_{s\in S_0}$ cover A (a "finite subcover").
 - (i) Find an example of a bounded set together with an open cover which has no finite subcover.
 - (ii) Find an example of a closed set together with an open cover which has no finite subcover.
- **10.** Let f be defined by

$$f(x,y) = \begin{cases} |y/x^2| e^{-|y/x^2|} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Prove that f is discontinuous at (0,0). Prove that f is continuous along any line passing through the origin.

11.* (This problem is optional and will not influence your homework score. It's a good one, though.) On $\mathbb R$ we define the function

$$f(x) \ = \ \begin{cases} 0 & \text{if x is irrational} \\ 1/q & \text{if $x=p/q$ with $p\in\mathbb{Z}$ and $q\in\mathbb{N}$ having no common divisor} \,. \end{cases}$$

Prove that f is continuous at every irrational point and discontinuous at every rational point.

Due: Thursday, February 28, in class.