Problem Set 2

1. Prove that a uniformly continuous function is continuous.
2. Does the function

$$
f(x, y)=\frac{x^{3}-y^{3}}{|x-y|+y^{2}}
$$

have a limit as $(x, y) \rightarrow 0$? If yes, give the limit. Answer the same question for the function

$$
f(x, y)=\left(x+y^{3}, x+\frac{x}{x^{2}+y^{2}}\right) .
$$

3. Recall the topological characterization of continuity: f is continuous if and only if $f^{-1}(U)$ is open whenever U is open. Here f^{-1} cannot be replaced with f : find a continuous function f and an open set U such that $f(U)$ is not open.
4. A function $f: D \rightarrow \mathbb{R}^{m}$ for $D \subset \mathbb{R}^{n}$ is called Lipschitz continuous if there exists a constant L such that

$$
|f(x)-f(y)| \leqslant L|x-y| \quad \forall x, y \in D
$$

The constant L is called the Lipschitz constant of f.
(i) Prove that a Lipschitz continuous function is uniformly continuous.
(ii) Find an example of a uniformly continuous function that is not Lipschitz continuous.
(iii) Prove that the distance (or norm) $x \mapsto|x|$ is a Lipschitz continuous function from \mathbb{R}^{n} to \mathbb{R}.
(iv) Prove that addition $(x, y) \mapsto x+y$ is a Lipschitz continuous function from $\mathbb{R}^{n} \times \mathbb{R}^{n}$ to \mathbb{R}^{n}.
(v) Prove that the scalar product $(x, y) \mapsto\langle x, y\rangle$ is a Lipschitz continuous function from $D \times D$ to \mathbb{R} for any bounded domain D.
5. The notion of Hölder continuity is a generalization of Lipschitz continuity. Let $\alpha \geqslant 0$. We say that $f: D \rightarrow \mathbb{R}^{m}$ is α-Hölder continuous if there exists a constant L such that

$$
|f(x)-f(y)| \leqslant L|x-y|^{\alpha} \quad \forall x, y \in D .
$$

(i) What does this condition mean if $\alpha=1$? What about $\alpha=0$?
(ii) Prove that an α-Hölder continuous function is uniformly continuous provided $\alpha>0$.
(iii) Prove that if D is bounded, $\alpha \leqslant \beta$, and f is β-Hölder continuous, then f is α-Hölder continuous.
(iv) Prove that if f is α-Hölder continuous for $\alpha>1$, then f is constant.

Hints. Pick $x, y \in D$ and estimate $|f(x)-f(y)|$ by choosing a path $\left(x_{0}, \ldots, x_{n}\right)$ defined by

$$
x_{i}:=x+\frac{i}{n}(y-x) .
$$

Write $f(y)-f(x)$ as a telescoping sum. In the end take the limit $n \rightarrow \infty$.
6. A subset $A \subset \mathbb{R}^{n}$ is dense if for every $x \in \mathbb{R}^{n}$ the set $A \cap B_{\varepsilon}(x)$ is not empty.
(i) Prove that \mathbb{Q} is dense in \mathbb{R}.
(ii) Using (i), prove that \mathbb{Q}^{n} is dense in \mathbb{R}^{n}.
(iii) Let f and g be continuous functions and A be a dense set in \mathbb{R}^{n}. Prove that if f and g coincide on A then $f=g$ (i.e. they coincide on \mathbb{R}^{n}).
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined through

$$
f(x):= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q} .\end{cases}
$$

Show that f does not have a limit at any point in \mathbb{R}.
8. Recall that the Bolzano-Weierstrass theorem states that any bounded sequence in \mathbb{R} has a convergent subsequence. Use this result to prove that any bounded sequence in \mathbb{R}^{n} has a convergent subsequence. (This fact was used in class in the proof of the sequential characterization of compactness.)
Hint. Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be such a sequence, and apply the one-dimensional result to its components x_{k}^{i}, where $i=1, \ldots, n$. You will have to extract n decreasing subsequences.
9. Recall that the Heine-Borel characterization of compactness says that A is compact if and only if for any family of open sets $\left(A_{s}\right)_{s \in S}$ that cover A (an "open cover") there exists a finite subset $S_{0} \subset S$ such that the finite family of open sets $\left(A_{s}\right)_{s \in S_{0}}$ cover A (a "finite subcover").
(i) Find an example of a bounded set together with an open cover which has no finite subcover.
(ii) Find an example of a closed set together with an open cover which has no finite subcover.
10. Let f be defined by

$$
f(x, y)= \begin{cases}\left|y / x^{2}\right| \mathrm{e}^{-\left|y / x^{2}\right|} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Prove that f is discontinuous at $(0,0)$. Prove that f is continuous along any line passing through the origin.
11.* (This problem is optional and will not influence your homework score. It's a good one, though.) On \mathbb{R} we define the function

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational } \\ 1 / q & \text { if } x=p / q \text { with } p \in \mathbb{Z} \text { and } q \in \mathbb{N} \text { having no common divisor . }\end{cases}
$$

Prove that f is continuous at every irrational point and discontinuous at every rational point.

Due: Thursday, February 28, in class.

