Analysis 2 Antti Knowles

PROBLEM SET 3

1. Show that the following functions are differentiable and compute their differentials.

(i)
$$f(x,y,z) = \begin{pmatrix} xy^3 \\ z\sin y \\ x^2 - y^2z \end{pmatrix}$$
, (ii) $f(x,y) = \begin{cases} \frac{x^3}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$.

- **2.** Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable and homogeneous of degree $\alpha \in \mathbb{R}$, i.e. $f(tx) = t^{\alpha}f(x)$ for all $x \in \mathbb{R}^n$ and t > 0. Prove that $f'(x)x = \alpha f(x)$. (This is sometimes known as Euler's identity.)
- **3.** Prove that a continuously differentiable function (i.e. a function whose partial derivatives exist and are continuous) on \mathbb{R}^n is Lipschitz continuous on any compact subset of \mathbb{R}^n .
- **4.** (i) Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable, and γ a differentiable path such that $f(\gamma(t))$ is constant. Prove that $\nabla f(\gamma(t))$ is orthogonal to $\gamma'(t)$ for all t.
 - (ii) Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $a \in \mathbb{R}^n$. The rate of growth of f in the direction $v \in \mathbb{R}^n$ is given by the directional derivative $D_v f(a)$. Show that direction of maximal growth, i.e. the unit vector v for which $D_v f(a)$ is maximal, is $\nabla f(a)/|\nabla f(a)|$.
 - (iii) Interpret (i) and (ii) in terms of the following scenario: you are hiking in mountainous terrain, and f(x,y) represents the height of the terrain. If you are in possession of a map that includes contours lines, how should you walk if you want to reach a nearby summit as quickly as possible? Illustrate your argument using a sketch.
- 5. Recall that in class a path was defined to be continuous, piecewise continuously differentiable map $\gamma:[a,b]\to\mathbb{R}^n$. In other words, there is a partition $a=a_0< a_1< \cdots < a_k=b$ such that γ is continuously differentiable on (a_i,a_{i+1}) for each $i=0,\ldots,k-1$. Recall also that a 1-form λ is a continuous map from \mathbb{R}^n to the space of $1\times n$ matrices (dual vectors). The path integral of λ along γ was defined as

$$\int_{\gamma} \lambda := \int_{a}^{b} \lambda(\gamma(t)) \gamma'(t) dt.$$

Finally, recall that the reversal of $\gamma:[0,1]\to\mathbb{R}^n$ was defined through $(-\gamma)(t):=\gamma(1-t)$, and the join of the two paths $\gamma_1,\gamma_2:[0,1]\to\mathbb{R}^n$ satisfying $\gamma_1(1)=\gamma_2(0)$ was defined as the path $(\gamma_1\oplus\gamma_2):[0,2]\to\mathbb{R}^n$ given by

$$(\gamma_1 \oplus \gamma_2)(t) := \begin{cases} \gamma_1(t) & \text{if } t \in [0,1] \\ \gamma_2(t-1) & \text{if } t \in (1,2]. \end{cases}$$

Prove that

$$\int_{-\gamma} \lambda = -\int_{\gamma} \lambda \,, \qquad \int_{\gamma_1 \oplus \gamma_2} \lambda \, = \, \int_{\gamma_1} \lambda_1 + \int_{\gamma_2} \lambda \,.$$

Hint. If you are having trouble with general piecewise differentiable paths, try first proving this for differentiable paths. Then extend your result to arbitrary piecewise differentiable paths.

6. If $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and f(0) = 0, prove that there exist continuous $g_i: \mathbb{R}^n \to \mathbb{R}$ such that

$$f(x) = \sum_{i=1}^{n} x_i g_i(x).$$

Hint. Write $f(x) - f(0) = f(tx)|_{t=0}^{1}$ and apply the fundamental theorem of calculus.

7. In this problem we work in \mathbb{R}^2 . Define the 1-forms

$$\mu(x,y) := (0,x), \qquad \nu(x,y) := (-y,0), \qquad \lambda(x,y) := \frac{1}{2}(-y,x).$$

- (i) Let γ be the path that traces the boundary of a disk of radius r once in the counterclockwise direction. Compute $\int_{\gamma} \mu$, $\int_{\gamma} \nu$, and $\int_{\gamma} \lambda$. Do the same when γ traces the boundary of a rectangle with side lengths a and b. What do you observe?
- (ii) Let γ be an arbitrary closed path. Prove that $\int_{\gamma} \mu = \int_{\gamma} \nu = \int_{\gamma} \lambda$. *Hint.* For e.g. the first equality, find a function f such that $\mu = \nu + Df$.
- (iii)* In general, if γ is a closed path that traces the boundary of an arbitrary open region A in the counterclockwise direction, then any of the above integrals gives the area of A. Prove this fact under the assumption that A is $star\ shaped$, i.e. that for any $x \in A$, the segment joining x to the origin is contained in A.

Hints. Consider the triangle with vertices (0,0), (x,y), and $(x+\Delta x,y+\Delta y)$, and suppose that $x \Delta y - y \Delta x \ge 0$. What does this condition mean geometrically? (Using the vector product in \mathbb{R}^3 might be helpful here.) Prove that the area of this triangle is

$$\frac{x\,\Delta y - y\,\Delta x}{2}\,.$$

Prove that by assumption on γ , the three vertices 0, $\gamma(t)$, and $\gamma(t) + \gamma'(t) \Delta t$ satisfy the above condition for any t and $\Delta t > 0$. Then express the area of A using a Riemann sum, by breaking it up into thin triangular slices.

8. In \mathbb{R}^3 it is often convenient to use spherical coordinates $(r, \theta, \phi) \in [0, \infty) \times [0, \pi] \times [0, 2\pi)$. The coordinate map is $(x, y, z)^T = T(r, \theta, \phi)$, where

$$T(r, \theta, \phi) := \begin{pmatrix} r \sin \theta \cos \phi \\ r \sin \theta \sin \phi \\ r \cos \theta \end{pmatrix}.$$

- (i) Give a geometric interpretation of the parameters r, θ , and ϕ .
- (ii) Compute T'. Show that the columns of T' are orthogonal. Interpret this result geometrically using a sketch.
- (iii) Let f be differentiable on \mathbb{R}^n , and define $g:=f\circ T$. The function g represents the function f expressed in spherical coordinates. Compute all partial derivatives of g in terms of the partial derivatives of f. Find $\frac{\partial g}{\partial r}$ and $\frac{\partial g}{\partial \theta}$ for the functions $f(x,y,z)=x^2+y^2+z^2$ and f(x,y,z)=x-y.
- **9.** Let $f: \mathbb{R}^n \to \mathbb{R}$ be a polynomial in n variables, i.e.

$$f(x_1, \dots, x_n) = \sum_{k_1, \dots, k_n = 0}^m a_{k_1 \dots k_n} x_1^{k_1} \cdots x_n^{k_n}$$

for some coefficients $a_{k_1...k_n}$. Prove that f is differentiable.

10. Let

$$U \; := \; \left\{ A \in \mathbb{R}^{n \times n} : A \text{ is an invertible matrix} \right\}.$$

- (i) Show that U is an open subset of $\mathbb{R}^{n \times n}$. Hint. Use that $A \in U$ if and only if $\det(A) \neq 0$. Prove that det is a continuous function on $\mathbb{R}^{n \times n}$. Recall that a function is continuous if and only if the preimages of open sets
- (ii) Prove that the map $f: U \to U$ defined by $f(A) := A^{-1}$ is differentiable with

$$Df_A(B) = -A^{-1}BA^{-1}. (1)$$

Hints. In order to prove that f is differentiable, you can use e.g. Cramer's rule to show that all entries of f have continuous partial derivatives in A. In order to obtain (1), it is easiest to compute the directional derivative $\frac{d}{dt}f(A+tB)|_{t=0}$ from the identity Af(A) = 1 for all $A \in U$.

11. (i) Prove that $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$ is differentiable. If A is invertible, prove that the differential of det at A is given by

$$D \det_A(B) = \operatorname{Tr}(A^{-1}B) \det(A)$$
.

Hints. Work directly using the definition

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A_{1\sigma(1)} \cdots A_{n\sigma(n)}.$$

For the second part, assume first that A = 1 and compute the directional derivative $\frac{d}{dt} \det(1+tB)|_{t=0}$. In a second step, take a general invertible A and reduce the problem to the first case.

(ii)* For any $n \times n$ matrix A we define the exponential

$$\exp(A) := \sum_{k=0}^{\infty} \frac{1}{k!} A^k.$$

Prove that this series converges absolutely (componentwise).

Hint. Introduce $M := \max_{i,j} |A_{ij}|$ and estimate $|(A^k)_{ij}| \leq M^k n^{k-1}$.

- (iii)* Show that $\exp(tA) \exp(sA) = \exp((t+s)A)$.

 Hint. Using the fact that both series converge absolutely, you may multiply the series
- (iv)* Prove that $\exp(At)$ is differentiable in t with derivative

out and rearrange the terms.

$$\frac{\mathrm{d}}{\mathrm{d}t} \exp(At) = A \exp(At).$$

 $(v)^*$ By (iii), $\exp(tA)$ is invertible for all t (why?). Use (i) to show

$$\frac{\mathrm{d}}{\mathrm{d}t} \det(\exp(tA)) = \mathrm{Tr}(A) \det(\exp(tA)).$$

Solve the differential equation to conclude that

$$\det(\exp(A)) = \exp(\operatorname{Tr} A).$$

This problem is an example of how analysis can be used to derive identities in linear algebra.

(vi)** It is not hard to see that $\exp: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ is differentiable. Can you find its differential?

Due: Tuesday, March 26, in class.