## Problem Set 3

1. Show that the following functions are differentiable and compute their differentials.

$$
\text { (i) } f(x, y, z)=\left(\begin{array}{c}
x y^{3} \\
z \sin y \\
x^{2}-y^{2} z
\end{array}\right), \quad \text { (ii) } f(x, y)= \begin{cases}\frac{x^{3}}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0) .\end{cases}
$$

2. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and homogeneous of degree $\alpha \in \mathbb{R}$, i.e. $f(t x)=$ $t^{\alpha} f(x)$ for all $x \in \mathbb{R}^{n}$ and $t>0$. Prove that $f^{\prime}(x) x=\alpha f(x)$. (This is sometimes known as Euler's identity.)
3. Prove that a continuously differentiable function (i.e. a function whose partial derivatives exist and are continuous) on $\mathbb{R}^{n}$ is Lipschitz continuous on any compact subset of $\mathbb{R}^{n}$.
4. (i) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable, and $\gamma$ a differentiable path such that $f(\gamma(t))$ is constant. Prove that $\nabla f(\gamma(t))$ is orthogonal to $\gamma^{\prime}(t)$ for all $t$.
(ii) Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $a \in \mathbb{R}^{n}$. The rate of growth of $f$ in the direction $v \in \mathbb{R}^{n}$ is given by the directional derivative $D_{v} f(a)$. Show that direction of maximal growth, i.e. the unit vector $v$ for which $D_{v} f(a)$ is maximal, is $\nabla f(a) /|\nabla f(a)|$.
(iii) Interpret (i) and (ii) in terms of the following scenario: you are hiking in mountainous terrain, and $f(x, y)$ represents the height of the terrain. If you are in possession of a map that includes contours lines, how should you walk if you want to reach a nearby summit as quickly as possible? Illustrate your argument using a sketch.
5. Recall that in class a path was defined to be continuous, piecewise continuously differentiable map $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$. In other words, there is a partition $a=a_{0}<a_{1}<\cdots<a_{k}=b$ such that $\gamma$ is continuously differentiable on ( $a_{i}, a_{i+1}$ ) for each $i=0, \ldots, k-1$. Recall also that a 1 -form $\lambda$ is a continuous map from $\mathbb{R}^{n}$ to the space of $1 \times n$ matrices (dual vectors). The path integral of $\lambda$ along $\gamma$ was defined as

$$
\int_{\gamma} \lambda:=\int_{a}^{b} \lambda(\gamma(t)) \gamma^{\prime}(t) \mathrm{d} t .
$$

Finally, recall that the reversal of $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ was defined through $(-\gamma)(t):=\gamma(1-t)$, and the join of the two paths $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow \mathbb{R}^{n}$ satisfying $\gamma_{1}(1)=\gamma_{2}(0)$ was defined as the path $\left(\gamma_{1} \oplus \gamma_{2}\right):[0,2] \rightarrow \mathbb{R}^{n}$ given by

$$
\left(\gamma_{1} \oplus \gamma_{2}\right)(t):= \begin{cases}\gamma_{1}(t) & \text { if } t \in[0,1] \\ \gamma_{2}(t-1) & \text { if } t \in(1,2]\end{cases}
$$

Prove that

$$
\int_{-\gamma} \lambda=-\int_{\gamma} \lambda, \quad \int_{\gamma_{1} \oplus \gamma_{2}} \lambda=\int_{\gamma_{1}} \lambda_{1}+\int_{\gamma_{2}} \lambda .
$$

Hint. If you are having trouble with general piecewise differentiable paths, try first proving this for differentiable paths. Then extend your result to arbitrary piecewise differentiable paths.
6. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and $f(0)=0$, prove that there exist continuous $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
f(x)=\sum_{i=1}^{n} x_{i} g_{i}(x)
$$

Hint. Write $f(x)-f(0)=\left.f(t x)\right|_{t=0} ^{1}$ and apply the fundamental theorem of calculus.
7. In this problem we work in $\mathbb{R}^{2}$. Define the 1 -forms

$$
\mu(x, y):=(0, x), \quad \nu(x, y):=(-y, 0), \quad \lambda(x, y):=\frac{1}{2}(-y, x) .
$$

(i) Let $\gamma$ be the path that traces the boundary of a disk of radius $r$ once in the counterclockwise direction. Compute $\int_{\gamma} \mu, \int_{\gamma} \nu$, and $\int_{\gamma} \lambda$. Do the same when $\gamma$ traces the boundary of a rectangle with side lengths $a$ and $b$. What do you observe?
(ii) Let $\gamma$ be an arbitrary closed path. Prove that $\int_{\gamma} \mu=\int_{\gamma} \nu=\int_{\gamma} \lambda$. Hint. For e.g. the first equality, find a function $f$ such that $\mu=\nu+D f$.
(iii)* In general, if $\gamma$ is a closed path that traces the boundary of an arbitrary open region $A$ in the counterclockwise direction, then any of the above integrals gives the area of $A$. Prove this fact under the assumption that $A$ is star shaped, i.e. that for any $x \in A$, the segment joining $x$ to the origin is contained in $A$.
Hints. Consider the triangle with vertices $(0,0),(x, y)$, and $(x+\Delta x, y+\Delta y)$, and suppose that $x \Delta y-y \Delta x \geqslant 0$. What does this condition mean geometrically? (Using the vector product in $\mathbb{R}^{3}$ might be helpful here.) Prove that the area of this triangle is

$$
\frac{x \Delta y-y \Delta x}{2} .
$$

Prove that by assumption on $\gamma$, the three vertices $0, \gamma(t)$, and $\gamma(t)+\gamma^{\prime}(t) \Delta t$ satisfy the above condition for any $t$ and $\Delta t>0$. Then express the area of $A$ using a Riemann sum, by breaking it up into thin triangular slices.
8. In $\mathbb{R}^{3}$ it is often convenient to use spherical coordinates $(r, \theta, \phi) \in[0, \infty) \times[0, \pi] \times[0,2 \pi)$. The coordinate map is $(x, y, z)^{T}=T(r, \theta, \phi)$, where

$$
T(r, \theta, \phi):=\left(\begin{array}{c}
r \sin \theta \cos \phi \\
r \sin \theta \sin \phi \\
r \cos \theta
\end{array}\right) .
$$

(i) Give a geometric interpretation of the parameters $r, \theta$, and $\phi$.
(ii) Compute $T^{\prime}$. Show that the columns of $T^{\prime}$ are orthogonal. Interpret this result geometrically using a sketch.
(iii) Let $f$ be differentiable on $\mathbb{R}^{n}$, and define $g:=f \circ T$. The function $g$ represents the function $f$ expressed in spherical coordinates. Compute all partial derivatives of $g$ in terms of the partial derivatives of $f$. Find $\frac{\partial g}{\partial r}$ and $\frac{\partial g}{\partial \theta}$ for the functions $f(x, y, z)=$ $x^{2}+y^{2}+z^{2}$ and $f(x, y, z)=x-y$.
9. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial in $n$ variables, i.e.

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{k_{1}, \ldots, k_{n}=0}^{m} a_{k_{1} \ldots k_{n}} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}
$$

for some coefficients $a_{k_{1} \ldots k_{n}}$. Prove that $f$ is differentiable.
10. Let

$$
U:=\left\{A \in \mathbb{R}^{n \times n}: A \text { is an invertible matrix }\right\} .
$$

(i) Show that $U$ is an open subset of $\mathbb{R}^{n \times n}$.

Hint. Use that $A \in U$ if and only if $\operatorname{det}(A) \neq 0$. Prove that det is a continuous function on $\mathbb{R}^{n \times n}$. Recall that a function is continuous if and only if the preimages of open sets are open.
(ii) Prove that the map $f: U \rightarrow U$ defined by $f(A):=A^{-1}$ is differentiable with

$$
\begin{equation*}
D f_{A}(B)=-A^{-1} B A^{-1} \tag{1}
\end{equation*}
$$

Hints. In order to prove that $f$ is differentiable, you can use e.g. Cramer's rule to show that all entries of $f$ have continuous partial derivatives in $A$. In order to obtain (1), it is easiest to compute the directional derivative $\left.\frac{\mathrm{d}}{\mathrm{d} t} f(A+t B)\right|_{t=0}$ from the identity $A f(A)=\mathbb{1}$ for all $A \in U$.
11. (i) Prove that det : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is differentiable. If $A$ is invertible, prove that the differential of $\operatorname{det}$ at $A$ is given by

$$
D \operatorname{det}_{A}(B)=\operatorname{Tr}\left(A^{-1} B\right) \operatorname{det}(A)
$$

Hints. Work directly using the definition

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}
$$

For the second part, assume first that $A=\mathbb{1}$ and compute the directional derivative $\left.\frac{\mathrm{d}}{\mathrm{d} t} \operatorname{det}(\mathbb{1}+t B)\right|_{t=0}$. In a second step, take a general invertible $A$ and reduce the problem to the first case.
(ii)* For any $n \times n$ matrix $A$ we define the exponential

$$
\exp (A):=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}
$$

Prove that this series converges absolutely (componentwise).
Hint. Introduce $M:=\max _{i, j}\left|A_{i j}\right|$ and estimate $\left|\left(A^{k}\right)_{i j}\right| \leqslant M^{k} n^{k-1}$.
(iii)* Show that $\exp (t A) \exp (s A)=\exp ((t+s) A)$.

Hint. Using the fact that both series converge absolutely, you may multiply the series out and rearrange the terms.
(iv)* Prove that $\exp (A t)$ is differentiable in $t$ with derivative

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \exp (A t)=A \exp (A t)
$$

(v)* By (iii), $\exp (t A)$ is invertible for all $t$ (why?). Use (i) to show

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det}(\exp (t A))=\operatorname{Tr}(A) \operatorname{det}(\exp (t A))
$$

Solve the differential equation to conclude that

$$
\operatorname{det}(\exp (A))=\exp (\operatorname{Tr} A)
$$

This problem is an example of how analysis can be used to derive identities in linear algebra.
$(\mathrm{vi})^{* *}$ It is not hard to see that exp $: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ is differentiable. Can you find its differential?

Due: Tuesday, March 26, in class.

