Analysis 2 Antti Knowles

PROBLEM SET 3

1. Show that the following functions are differentiable and compute their differentials.

xy3 23 if (2,1) # (0.0
(i) flx,y,2) = zsiny |, (i) flz,y) = V12 | (z,y) # (0,0)
T2 — y2z 0 if (SC, y) _ (0’ 0) '

2. Suppose that f : R" — R is differentiable and homogeneous of degree o € R, i.e. f(tx) =
t*f(z) for all z € R™ and t > 0. Prove that f'(z)x = af(z). (This is sometimes known as
Euler’s identity.)

3. Prove that a continuously differentiable function (i.e. a function whose partial derivatives
exist and are continuous) on R" is Lipschitz continuous on any compact subset of R™.

4. (i) Let f : R® — R be differentiable, and ~ a differentiable path such that f(v(t)) is
constant. Prove that V f(v(t)) is orthogonal to +/(¢) for all ¢.

(ii) Suppose that f : R®™ — R is differentiable at a € R™. The rate of growth of f in the
direction v € R" is given by the directional derivative D, f(a). Show that direction of
maximal growth, i.e. the unit vector v for which D, f(a) is maximal, is V f(a)/|V f(a)|.

(iii) Interpret (i) and (ii) in terms of the following scenario: you are hiking in mountainous
terrain, and f(z,y) represents the height of the terrain. If you are in possession of a
map that includes contours lines, how should you walk if you want to reach a nearby
summit as quickly as possible? Illustrate your argument using a sketch.

5. Recall that in class a path was defined to be continuous, piecewise continuously differentiable
map 7 : [a,b] — R™. In other words, there is a partition a = ap < a; < -+ < ax = b such
that ~ is continuously differentiable on (a;, a;+1) for each i = 0,...,k — 1. Recall also that
a 1-form A is a continuous map from R”™ to the space of 1 x n matrices (dual vectors). The
path integral of A along v was defined as

[ = [

Finally, recall that the reversal of v : [0,1] — R™ was defined through (—v)(t) := (1 — ¢),
and the join of the two paths 1,72 : [0, 1] — R”™ satisfying 71 (1) = 72(0) was defined as the
path (1 ® 72) : [0,2] — R given by

’)’1(75) ifte [0, 1]

(& )(t) = {72(131) ift € (1,2].



Prove that
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Hint. If you are having trouble with general piecewise differentiable paths, try first proving
this for differentiable paths. Then extend your result to arbitrary piecewise differentiable
paths.

6. If f:R™ — R is continuously differentiable and f(0) = 0, prove that there exist continuous
gi - R™ — R such that

fl@) = wigi(x).
i=1

Hint. Write f(z) — f(0) = f(tz)|,_o and apply the fundamental theorem of calculus.

7. In this problem we work in R2. Define the 1-forms

pey) = O2),  wey) = (3,0, Awy) = (pa).

(i) Let 7 be the path that traces the boundary of a disk of radius r once in the counterclock-
wise direction. Compute f,y i, fv v, and f,y A. Do the same when ~ traces the boundary
of a rectangle with side lengths a and b. What do you observe?

(ii) Let v be an arbitrary closed path. Prove that f7 = fv V= f,y A.

Hint. For e.g. the first equality, find a function f such that p=v + Df.

(iii)* In general, if 7 is a closed path that traces the boundary of an arbitrary open region A
in the counterclockwise direction, then any of the above integrals gives the area of A.
Prove this fact under the assumption that A is star shaped, i.e. that for any x € A, the
segment joining z to the origin is contained in A.

Hints. Consider the triangle with vertices (0,0), (z,y), and (x4 Az, y+Ay), and suppose
that x Ay —y Az > 0. What does this condition mean geometrically? (Using the vector
product in R? might be helpful here.) Prove that the area of this triangle is

x Ay —yAx
—

Prove that by assumption on +, the three vertices 0, v(t), and ~(t) ++/(t) At satisfy the
above condition for any ¢ and At > 0. Then express the area of A using a Riemann sum,
by breaking it up into thin triangular slices.

8. In R? it is often convenient to use spherical coordinates (r,0,$) € [0,00) x [0, 7] x [0,27). The
coordinate map is (x,y,2)T = T(r,0,¢), where

7 sin 0 cos ¢
T(r,0,¢0) := | rsinfsing
7 cos 0



10.

11.

(i) Give a geometric interpretation of the parameters r, 6, and ¢.

(ii) Compute T". Show that the columns of 7" are orthogonal. Interpret this result geomet-
rically using a sketch.

(iii) Let f be differentiable on R", and define g := f o T. The function g represents the
function f expressed in spherical coordinates. Compute all partial derivatives of ¢ in
terms of the partial derivatives of f. Find % and % for the functions f(z,y,z) =
2?24+ y? + 22 and f(z,y,2) =z —y.

Let f : R™ — R be a polynomial in n variables, i.e.

m

k kn
flz1,...,xp) = Z Ak kL1 Xy

K1y kin=0
for some coefficients ag, . ,. Prove that f is differentiable.

Let
U = {A € R"™™: A is an invertible matrix} .

(i) Show that U is an open subset of R™*™.

Hint. Use that A € U if and only if det(A) # 0. Prove that det is a continuous function
on R™™. Recall that a function is continuous if and only if the preimages of open sets
are open.

(ii) Prove that the map f: U — U defined by f(A) := A~ is differentiable with
Dfa(B) = —A7'BA!, (1)

Hints. In order to prove that f is differentiable, you can use e.g. Cramer’s rule to show
that all entries of f have continuous partial derivatives in A. In order to obtain (1),
it is easiest to compute the directional derivative % f(A + tB)|i=o from the identity
Af(A)=1forall AcU.

(i) Prove that det : R™*™ — R is differentiable. If A is invertible, prove that the differential
of det at A is given by
Ddets(B) = Tr(A™'B)det(A).

Hints. Work directly using the definition

det(A) = Z Sgn(J)Ala(l) T Ana(n) .
oESy

For the second part, assume first that A = 1 and compute the directional derivative
% det(1 +¢B)|t—o. In a second step, take a general invertible A and reduce the problem
to the first case.



(ii)* For any n x n matrix A we define the exponential

| —

exp(A) = Z Ak
k=0

>~

!

Prove that this series converges absolutely (componentwise).
Hint. Introduce M := max; ;|A;;| and estimate |(A¥);;| < MFnkF=1L.
(iii)* Show that exp(tA)exp(sA) = exp((t + s)A).
Hint. Using the fact that both series converge absolutely, you may multiply the series
out and rearrange the terms.

(iv)* Prove that exp(At) is differentiable in ¢ with derivative

%exp(At) = Aexp(At).

(v)* By (iii), exp(tA) is invertible for all ¢ (why?). Use (i) to show
%det(exp(tA)) = Tr(A) det(exp(tA)).
Solve the differential equation to conclude that
det(exp(A)) = exp(TrA).

This problem is an example of how analysis can be used to derive identities in linear
algebra.

(vi)** It is not hard to see that exp : R"*"™ — R™*™ ig differentiable. Can you find its differen-
tial?

Due: Tuesday, March 26, in class.



