
Analysis 2 Antti Knowles

Problem Set 4

1. Let f ∈ Ck+1 in a neighborhood of a ∈ Rn. In class we saw that f can be expressed using its
Taylor series as

f(a+ h) = Pk(h) +Rk(h) (1)

where

Pk(h) ..=
k∑
r=0

1

r!
Dr
hf(a) , Rk(h) =

1

(k + 1)!
Dk+1
h f(ξ) ,

for some ξ in the segment from a to a+ h.

(i) Find the Taylor polynomial of degree 2 (i.e. P2(h)) of the function f(x, y) = sin(xy)ex
2

at a = (0, 0).

(ii) Find the Taylor polynomial of degree 3 (i.e. P3(h)) of the function f(x, y) = xy at
a = (1, 1).

(iii) Find the Taylor series (i.e. limk→∞ Pk(h)) of the function f(x, y) =
√

1 + x2 + y2 at
a = (0, 0).

2. Locate the critical points and extrema of the functions

(i) f(x, y) = x3 + y3 + 3xy , (ii) f(x, y, z) = x2 + y2 + z2 − 2xyz .

3. (i) In class we proved that Rk(h) = O(|h|k+1), so that for f ∈ Ck+1 we have

f(a+ h) = Pk(h) +O(|h|k+1) . (2)

In some applications we want to make the weaker assumption f ∈ Ck. Prove, using
Taylor’s theorem, that if f ∈ Ck then

f(a+ h) = Pk(h) + o(|h|k) . (3)

Note that (3) is weaker than (2), but for almost all practical purposes just as useful; its
advantage is that it holds under the weaker assumption f ∈ Ck rather than f ∈ Ck+1.

Hints. Start from (1) with k replaced by k − 1. You have to prove that

Rk−1(h) =
1

k!
Dk
hf(a) + o(|h|k) .



(ii) Use (i) to prove the following, stronger, version of the criterion for locating local extrema
proved in class.

Suppose that f is C2 in a neighborhood of a ∈ Rn, and that a is a critical point of f .
Then

f ′′(a) positive definite =⇒ a is a local minimum of f

f ′′(a) negative definite =⇒ a is a local maximum of f

f ′′(a) nondefinite =⇒ a is neither a local maximum nor a local minimum .

(Note that this result is stronger because we only require that f be C2 and not C3.)

Hints. The proof is analogous to the one given in class, except that you should use (3) instead
of (2).

4. Let A,B ⊂ Rn be open, and suppose that f .. A→ B such that both f and f−1 are C1. Prove
that f ′(a) is an invertible matrix for all a ∈ A, and that for all a ∈ A with b ..= f(a) we have

(f−1)′(b) = (f ′(a))−1 .

(In words: the derivative of the inverse is the inverse of the derivative.)

5. Prove that the function f(x) ..= |x| is differentiable on Rn \ {0} and find ∇f(x).

6. The Laplacian ∆ is defined by

∆f(a) ..= Tr f ′′(a) =
n∑
i=1

D2
i f(a) .

It appears in just about every equation describing a law of nature, such as heat conduction,
motion of waves, motion of quantum-mechanical particles, electric and magnetic fields, and
Brownian motion.

(i) Prove that ∆ is invariant under rotations in the following sense. Let v1, . . . , vn be an
orthonormal basis of Rn. Then

∆f =
n∑
i=1

D2
vif

for all f ∈ C2(Rn).

(ii) Prove that for f, g ∈ C2 we have

∆(fg) = f∆g + 2〈∇f ,∇g〉+ g∆f .

(iii) Let n = 2 and consider the polar coordinates defined in class:

T .. [0,∞)× [0, 2π)→ R2 , T (r, θ) ..=

(
r cos θ
r sin θ

)
.



Express ∆ in polar coordinates. More precisely, let f ∈ C2(R2) and define g ..= f ◦ T .
Show that for r > 0 we have

(∆f)(T (r, θ)) =

(
D2
rg +

1

r2
D2
θg +

1

r
Drg

)
(r, θ) .

Hints. You will have to use the chain rule. One way to start is to compute Drg and
Dθg; you can differentiate these expressions again to obtain D2

rg and D2
θg.

(iv) Suppose that f .. Rn → R is invariant under rotations in the sense that f(x) = g(|x|) for
some g ∈ C2((0,∞)). Prove that

∆f(x) = g′′(|x|) +
n− 1

|x|
g′(|x|) .

(v) Let

ψ .. [0,∞)× Rn → R , ψ(t, x) ..=
1

tn/2
exp

(
−|x|

2

4t

)
.

Using (iv) show that

Dtψ(t, x) = ∆ψ(t, x) (t > 0 , x ∈ Rn) , (4)

where ∆ is the Laplacian in the variables x1, . . . , xn (and not t).

The equation (4) is call the heat equation and its solutions, such as ψ, model the diffusion
of heat through a conducting medium. The solution ψ given above corresponds to a single
heat source at x = 0 when t = 0, which diffuses through space as t increases. (If you
want, you can try to plot ψ for n = 1 for various values of t > 0 to get an idea of how
the heat distribution evolves in time.)

(vi) Let c > 0 and fix a unit vector v ∈ Rn and f ∈ C2(R). Show that

ψ .. R× Rn → R , ψ(t, x) ..= f
(
〈x, v〉 − ct

)
satisfies the wave equation

D2
tψ(t, x) = c2∆ψ(t, x) . (5)

(As above, the Laplacian ∆ only acts on x1, . . . , xn and not t.) As its name implies,
solutions ψ of the wave equation describe the motion of waves (e.g. sound, light) through
space; the speed of the waves (speed of sound or speed of light) is c.

7. It is of fundamental importance for many arguments in analysis that there exists a C∞

function which is positive inside the unit ball and zero outside. An example is

f(x) ..=

{
exp
(
1/(|x|2 − 1)

)
if |x| < 1

0 if |x| > 1 .

Prove that f ∈ C∞(Rn).



Hints. Write f(x) = g(|x|2) with some function (that you should determine) g .. R→ R. Show
that it suffices to show that g ∈ C∞(R). In order to prove that g ∈ C∞(R), the following fact
should be helpful: for all k ∈ N and r < 1, we have

g(k)(r) =
Pk(r)

Qk(r)
exp

(
1

r − 1

)
,

where Pk and Qk are polynomials. Prove this fact by induction on k.

8. A linear transformation A .. Rn → Rm is called conformal if there is a number ρ > 0 such
that ATA = ρ1.

(i) Prove that a conformal transformation preserves angles in the sense that, for any nonzero
v, w ∈ Rn, the vectors Av and Aw are also nonzero and the angle between v and w is
the same as the angle between Av and Aw.

(ii)* Prove that a linear map that preserves angles in the sense given in (i) is conformal.

(From (i) and (ii) we deduce that a linear map is conformal if and only if it preserves
angles.)

(iii) A mapping f ∈ C1(A;Rm), where A ⊂ Rn, is called conformal at a ∈ A if f ′(a) is
conformal.

Let γ1 and γ2 be two C1 curves in Rn that intersect: γ1(0) = γ2(0). Suppose that f is
conformal at this point of intersection. Prove that the angle between the tangents of γ1
and γ2 at time 0 is the same as the angle between the tangents of f ◦ γ1 and f ◦ γ2 at
time 0.

(iv)* The stereographic projection is a projection used to map the unit sphere in Rn+1 to Rn.
It is defined as follows. Let

Sn ..=
{
u ∈ Rn+1 .. |u| = 1

}
be the unit sphere, and let p ..= (0, . . . , 0, 1)T be the “north pole” of the sphere. For
x ∈ Rn, let l(x) be the line in Rn+1 that passes through the two points (x, 0) and p.

Draw a sketch of Rn+1, along with Sn and l(x). (You will have to take n = 1 or n = 2
for the sketch).

Show that l(x) intersects Sn at a unique point, which we denote by S(x). Show also that
S is a bijection between Rn and Sn \ {p}. It is called the stereographic projection.

Prove that

S(x) =
1

1 + |x|2

(
2x

|x|2 − 1

)
.

Finally, prove that S is conformal.

This fact is of great interest to cartographers: using S we may represent the surface
of the earth on a flat piece of paper in such a way that all angles are preserved. The
downside is that areas are not preserved; in fact, there is no projection that preserves
both angles and areas (this is a mathematical theorem). The stereographic projection
is accurate near the “south pole” (0, . . . , 0,−1)T , and becomes increasingly distorted as
one approaches the north pole p.



Due: Thursday, April 11, in class.


