Problem Set 4

1. Let $f \in C^{k+1}$ in a neighborhood of $a \in \mathbb{R}^{n}$. In class we saw that f can be expressed using its Taylor series as

$$
\begin{equation*}
f(a+h)=P_{k}(h)+R_{k}(h) \tag{1}
\end{equation*}
$$

where

$$
P_{k}(h):=\sum_{r=0}^{k} \frac{1}{r!} D_{h}^{r} f(a), \quad R_{k}(h)=\frac{1}{(k+1)!} D_{h}^{k+1} f(\xi),
$$

for some ξ in the segment from a to $a+h$.
(i) Find the Taylor polynomial of degree 2 (i.e. $P_{2}(h)$) of the function $f(x, y)=\sin (x y) \mathrm{e}^{x^{2}}$ at $a=(0,0)$.
(ii) Find the Taylor polynomial of degree 3 (i.e. $P_{3}(h)$) of the function $f(x, y)=x^{y}$ at $a=(1,1)$.
(iii) Find the Taylor series (i.e. $\lim _{k \rightarrow \infty} P_{k}(h)$) of the function $f(x, y)=\sqrt{1+x^{2}+y^{2}}$ at $a=(0,0)$.
2. Locate the critical points and extrema of the functions

$$
\text { (i) } f(x, y)=x^{3}+y^{3}+3 x y, \quad \text { (ii) } \quad f(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y z \text {. }
$$

3. (i) In class we proved that $R_{k}(h)=O\left(|h|^{k+1}\right)$, so that for $f \in C^{k+1}$ we have

$$
\begin{equation*}
f(a+h)=P_{k}(h)+O\left(|h|^{k+1}\right) . \tag{2}
\end{equation*}
$$

In some applications we want to make the weaker assumption $f \in C^{k}$. Prove, using Taylor's theorem, that if $f \in C^{k}$ then

$$
\begin{equation*}
f(a+h)=P_{k}(h)+o\left(|h|^{k}\right) . \tag{3}
\end{equation*}
$$

Note that (3) is weaker than (2), but for almost all practical purposes just as useful; its advantage is that it holds under the weaker assumption $f \in C^{k}$ rather than $f \in C^{k+1}$.
Hints. Start from (1) with k replaced by $k-1$. You have to prove that

$$
R_{k-1}(h)=\frac{1}{k!} D_{h}^{k} f(a)+o\left(|h|^{k}\right) .
$$

(ii) Use (i) to prove the following, stronger, version of the criterion for locating local extrema proved in class.
Suppose that f is C^{2} in a neighborhood of $a \in \mathbb{R}^{n}$, and that a is a critical point of f. Then

$$
\left.\begin{array}{rl}
f^{\prime \prime}(a) \text { positive definite } & \Longrightarrow \\
f^{\prime \prime}(a) \text { negative definite } & \Longrightarrow
\end{array} \begin{array}{l}
a \text { is a local minimum of } f \\
f^{\prime \prime}(a) \text { is a local maximum of } f
\end{array}\right]
$$

(Note that this result is stronger because we only require that f be C^{2} and not C^{3}.)
Hints. The proof is analogous to the one given in class, except that you should use (3) instead of (2).
4. Let $A, B \subset \mathbb{R}^{n}$ be open, and suppose that $f: A \rightarrow B$ such that both f and f^{-1} are C^{1}. Prove that $f^{\prime}(a)$ is an invertible matrix for all $a \in A$, and that for all $a \in A$ with $b:=f(a)$ we have

$$
\left(f^{-1}\right)^{\prime}(b)=\left(f^{\prime}(a)\right)^{-1} .
$$

(In words: the derivative of the inverse is the inverse of the derivative.)
5. Prove that the function $f(x):=|x|$ is differentiable on $\mathbb{R}^{n} \backslash\{0\}$ and find $\nabla f(x)$.
6. The Laplacian Δ is defined by

$$
\Delta f(a):=\operatorname{Tr} f^{\prime \prime}(a)=\sum_{i=1}^{n} D_{i}^{2} f(a) .
$$

It appears in just about every equation describing a law of nature, such as heat conduction, motion of waves, motion of quantum-mechanical particles, electric and magnetic fields, and Brownian motion.
(i) Prove that Δ is invariant under rotations in the following sense. Let v_{1}, \ldots, v_{n} be an orthonormal basis of \mathbb{R}^{n}. Then

$$
\Delta f=\sum_{i=1}^{n} D_{v_{i}}^{2} f
$$

for all $f \in C^{2}\left(\mathbb{R}^{n}\right)$.
(ii) Prove that for $f, g \in C^{2}$ we have

$$
\Delta(f g)=f \Delta g+2\langle\nabla f, \nabla g\rangle+g \Delta f .
$$

(iii) Let $n=2$ and consider the polar coordinates defined in class:

$$
T:[0, \infty) \times[0,2 \pi) \rightarrow \mathbb{R}^{2}, \quad T(r, \theta):=\binom{r \cos \theta}{r \sin \theta}
$$

Express Δ in polar coordinates. More precisely, let $f \in C^{2}\left(\mathbb{R}^{2}\right)$ and define $g:=f \circ T$. Show that for $r>0$ we have

$$
(\Delta f)(T(r, \theta))=\left(D_{r}^{2} g+\frac{1}{r^{2}} D_{\theta}^{2} g+\frac{1}{r} D_{r} g\right)(r, \theta) .
$$

Hints. You will have to use the chain rule. One way to start is to compute $D_{r} g$ and $D_{\theta} g$; you can differentiate these expressions again to obtain $D_{r}^{2} g$ and $D_{\theta}^{2} g$.
(iv) Suppose that $f: \mathbb{R}^{n} \rightarrow R$ is invariant under rotations in the sense that $f(x)=g(|x|)$ for some $g \in C^{2}((0, \infty))$. Prove that

$$
\Delta f(x)=g^{\prime \prime}(|x|)+\frac{n-1}{|x|} g^{\prime}(|x|) .
$$

(v) Let

$$
\psi:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \psi(t, x):=\frac{1}{t^{n / 2}} \exp \left(-\frac{|x|^{2}}{4 t}\right)
$$

Using (iv) show that

$$
\begin{equation*}
D_{t} \psi(t, x)=\Delta \psi(t, x) \quad\left(t>0, x \in \mathbb{R}^{n}\right), \tag{4}
\end{equation*}
$$

where Δ is the Laplacian in the variables $x_{1}, \ldots, x_{n}($ and not $t)$.
The equation (4) is call the heat equation and its solutions, such as ψ, model the diffusion of heat through a conducting medium. The solution ψ given above corresponds to a single heat source at $x=0$ when $t=0$, which diffuses through space as t increases. (If you want, you can try to plot ψ for $n=1$ for various values of $t>0$ to get an idea of how the heat distribution evolves in time.)
(vi) Let $c>0$ and fix a unit vector $v \in \mathbb{R}^{n}$ and $f \in C^{2}(\mathbb{R})$. Show that

$$
\psi: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \psi(t, x):=f(\langle x, v\rangle-c t)
$$

satisfies the wave equation

$$
\begin{equation*}
D_{t}^{2} \psi(t, x)=c^{2} \Delta \psi(t, x) \tag{5}
\end{equation*}
$$

(As above, the Laplacian Δ only acts on x_{1}, \ldots, x_{n} and not t.) As its name implies, solutions ψ of the wave equation describe the motion of waves (e.g. sound, light) through space; the speed of the waves (speed of sound or speed of light) is c.
7. It is of fundamental importance for many arguments in analysis that there exists a C^{∞} function which is positive inside the unit ball and zero outside. An example is

$$
f(x):= \begin{cases}\exp \left(1 /\left(|x|^{2}-1\right)\right) & \text { if }|x|<1 \\ 0 & \text { if }|x| \geqslant 1\end{cases}
$$

Prove that $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$.

Hints. Write $f(x)=g\left(|x|^{2}\right)$ with some function (that you should determine) $g: \mathbb{R} \rightarrow \mathbb{R}$. Show that it suffices to show that $g \in C^{\infty}(\mathbb{R})$. In order to prove that $g \in C^{\infty}(\mathbb{R})$, the following fact should be helpful: for all $k \in \mathbb{N}$ and $r<1$, we have

$$
g^{(k)}(r)=\frac{P_{k}(r)}{Q_{k}(r)} \exp \left(\frac{1}{r-1}\right)
$$

where P_{k} and Q_{k} are polynomials. Prove this fact by induction on k.
8. A linear transformation $A: R^{n} \rightarrow \mathbb{R}^{m}$ is called conformal if there is a number $\rho>0$ such that $A^{T} A=\rho \mathbb{1}$.
(i) Prove that a conformal transformation preserves angles in the sense that, for any nonzero $v, w \in \mathbb{R}^{n}$, the vectors $A v$ and $A w$ are also nonzero and the angle between v and w is the same as the angle between $A v$ and $A w$.
(ii)* Prove that a linear map that preserves angles in the sense given in (i) is conformal. (From (i) and (ii) we deduce that a linear map is conformal if and only if it preserves angles.)
(iii) A mapping $f \in C^{1}\left(A ; \mathbb{R}^{m}\right)$, where $A \subset \mathbb{R}^{n}$, is called conformal at $a \in A$ if $f^{\prime}(a)$ is conformal.
Let γ_{1} and γ_{2} be two C^{1} curves in \mathbb{R}^{n} that intersect: $\gamma_{1}(0)=\gamma_{2}(0)$. Suppose that f is conformal at this point of intersection. Prove that the angle between the tangents of γ_{1} and γ_{2} at time 0 is the same as the angle between the tangents of $f \circ \gamma_{1}$ and $f \circ \gamma_{2}$ at time 0 .
(iv)* The stereographic projection is a projection used to map the unit sphere in \mathbb{R}^{n+1} to \mathbb{R}^{n}. It is defined as follows. Let

$$
\mathbb{S}^{n}:=\left\{u \in \mathbb{R}^{n+1}:|u|=1\right\}
$$

be the unit sphere, and let $p:=(0, \ldots, 0,1)^{T}$ be the "north pole" of the sphere. For $x \in \mathbb{R}^{n}$, let $l(x)$ be the line in \mathbb{R}^{n+1} that passes through the two points $(x, 0)$ and p.
Draw a sketch of \mathbb{R}^{n+1}, along with \mathbb{S}^{n} and $l(x)$. (You will have to take $n=1$ or $n=2$ for the sketch).
Show that $l(x)$ intersects \mathbb{S}^{n} at a unique point, which we denote by $S(x)$. Show also that S is a bijection between \mathbb{R}^{n} and $\mathbb{S}^{n} \backslash\{p\}$. It is called the stereographic projection.
Prove that

$$
S(x)=\frac{1}{1+|x|^{2}}\binom{2 x}{|x|^{2}-1}
$$

Finally, prove that S is conformal.
This fact is of great interest to cartographers: using S we may represent the surface of the earth on a flat piece of paper in such a way that all angles are preserved. The downside is that areas are not preserved; in fact, there is no projection that preserves both angles and areas (this is a mathematical theorem). The stereographic projection is accurate near the "south pole" $(0, \ldots, 0,-1)^{T}$, and becomes increasingly distorted as one approaches the north pole p.

Due: Thursday, April 11, in class.

