Analysis 2 Antti Knowles

PROBLEM SET 4

1. Let f € C*¥*! in a neighborhood of a € R”. In class we saw that f can be expressed using its
Taylor series as
fla+h) = Py(h)+ Ri(h) (1)

where
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for some ¢ in the segment from a to a + h.
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(i) Find the Taylor polynomial of degree 2 (i.e. P>(h)) of the function f(x,y) = sin(zy)e”

at a = (0,0).
(ii) Find the Taylor polynomial of degree 3 (i.e. P3(h)) of the function f(z,y) = z¥ at
a=(1,1).
(iii) Find the Taylor series (i.e. limg_ o, Pi(h)) of the function f(x,y) = v/1+ 22+ y? at
= (0,0).

2. Locate the critical points and extrema of the functions
(i) flz,y) = 2° +y° + 3ay, (i) f(z,y,2) = 22 +y*+ 22 — 2zyz.
3. (i) In class we proved that Ri(h) = O(|h|F*1), so that for f € C**! we have
fla+h) = Py(h) +O(|n[**). (2)

In some applications we want to make the weaker assumption f € C*. Prove, using
Taylor’s theorem, that if f € C* then

fla+n) = Py(h) +o(|n]). 3)

Note that (3) is weaker than (2), but for almost all practical purposes just as useful; its
advantage is that it holds under the weaker assumption f € C* rather than f € C*+1.

Hints. Start from (1) with k replaced by k — 1. You have to prove that

Ry a() = 5 Dkf (@) + o).



(ii) Use (i) to prove the following, stronger, version of the criterion for locating local extrema
proved in class.
Suppose that f is C? in a neighborhood of a € R™, and that a is a critical point of f.

Then
1" (a) positive definite — a is a local minimum of f
f"(a) negative definite — a is a local maximum of f
f"(a) nondefinite — a is neither a local maximum nor a local minimum .

(Note that this result is stronger because we only require that f be C? and not C3.)

Hints. The proof is analogous to the one given in class, except that you should use (3) instead
of (2).

Let A, B C R™ be open, and suppose that f : A — B such that both f and f~' are C'. Prove
that f’(a) is an invertible matrix for all @ € A, and that for all a € A with b := f(a) we have

() = (f(@).
(In words: the derivative of the inverse is the inverse of the derivative.)
Prove that the function f(x) := |z| is differentiable on R™\ {0} and find V f(z).

The Laplacian A is defined by
Af(a) = Trf"(a) = Y _ D} f(a).
i=1

It appears in just about every equation describing a law of nature, such as heat conduction,
motion of waves, motion of quantum-mechanical particles, electric and magnetic fields, and
Brownian motion.

(i) Prove that A is invariant under rotations in the following sense. Let v1,...,v, be an
orthonormal basis of R". Then

Af = iDif
=1

for all f € C?(R").
(ii) Prove that for f,g € C? we have

A(fg) = fAg+2(Vf,Vg)+gAf.

(iii) Let n = 2 and consider the polar coordinates defined in class:

rsin 6

T:[0,00) x [0,27) = R?,  T(r,0) := (’"COSQ>.



Express A in polar coordinates. More precisely, let f € C%(R?) and define g := f o T.
Show that for r > 0 we have

@N(T.0) = (Do+ DRo+ 1019 (n0),

Hints. You will have to use the chain rule. One way to start is to compute D,g and
Dgg; you can differentiate these expressions again to obtain D?g and Dgg.

(iv) Suppose that f : R™ — R is invariant under rotations in the sense that f(z) = g(|z|) for
some g € C?((0,00)). Prove that

Af(z) = ¢ (zl) + ﬁ;,lg'uxr).

(v) Let

¥ :[0,00) x R" - R Y(t,x) = 1 —@
: 10, 00 ) , L) = tn/QeXp )

Using (iv) show that
Dyp(t,z) = AY(t,x) (t>0,zeR"), (4)

where A is the Laplacian in the variables z1,...,z, (and not t).

The equation (4) is call the heat equation and its solutions, such as v, model the diffusion
of heat through a conducting medium. The solution ) given above corresponds to a single
heat source at x = 0 when ¢t = 0, which diffuses through space as ¢ increases. (If you
want, you can try to plot ¥ for n = 1 for various values of ¢ > 0 to get an idea of how
the heat distribution evolves in time.)

(vi) Let ¢ > 0 and fix a unit vector v € R” and f € C%(R). Show that
P:RxR" - R, Y(t,z) = f({z,v) —ct)

satisfies the wave equation

DZ(t,z) = EAY(t,x). (5)

(As above, the Laplacian A only acts on z1,...,z, and not ¢t.) As its name implies,
solutions 1) of the wave equation describe the motion of waves (e.g. sound, light) through
space; the speed of the waves (speed of sound or speed of light) is c.

7. It is of fundamental importance for many arguments in analysis that there exists a C*°
function which is positive inside the unit ball and zero outside. An example is

flz) = {exp(l/(\:r:!2 —1)) if 2] <1

0 if || > 1.

Prove that f € C*°(R").



Hints. Write f(x) = g(Jx|?) with some function (that you should determine) g : R — R. Show
that it suffices to show that g € C°°(R). In order to prove that g € C*°(R), the following fact
should be helpful: for all £k € N and r < 1, we have

100 = gy

where P, and @) are polynomials. Prove this fact by induction on k.

A linear transformation A : R™ — R™ is called conformal if there is a number p > 0 such
that AT A = pl.

(i) Prove that a conformal transformation preserves angles in the sense that, for any nonzero
v, w € R", the vectors Av and Aw are also nonzero and the angle between v and w is
the same as the angle between Av and Aw.

(ii)* Prove that a linear map that preserves angles in the sense given in (i) is conformal.
(From (i) and (ii) we deduce that a linear map is conformal if and only if it preserves
angles.)

(iii) A mapping f € C'(A;R™), where A C R", is called conformal at a € A if f'(a) is

conformal.
Let 71 and 72 be two C! curves in R™ that intersect: v1(0) = 72(0). Suppose that f is
conformal at this point of intersection. Prove that the angle between the tangents of v;
and o at time 0 is the same as the angle between the tangents of f oy, and f oy, at
time 0.

(iv)* The stereographic projection is a projection used to map the unit sphere in R"*! to R™.
It is defined as follows. Let

S* = {ue R |u| = 1}

be the unit sphere, and let p := (0,...,0,1)7 be the “north pole” of the sphere. For
x € R™, let I(z) be the line in R"*! that passes through the two points (z,0) and p.
Draw a sketch of R"*! along with S” and I(z). (You will have to take n = 1 or n = 2
for the sketch).

Show that [(x) intersects S at a unique point, which we denote by S(x). Show also that
S is a bijection between R™ and S™ \ {p}. It is called the stereographic projection.

Prove that
1 2z
S = — .
® = 1758 (b 1)

Finally, prove that S is conformal.

This fact is of great interest to cartographers: using S we may represent the surface
of the earth on a flat piece of paper in such a way that all angles are preserved. The
downside is that areas are not preserved; in fact, there is no projection that preserves
both angles and areas (this is a mathematical theorem). The stereographic projection
is accurate near the “south pole” (0,...,0, —l)T, and becomes increasingly distorted as
one approaches the north pole p.



Due: Thursday, April 11, in class.



