Analysis 2 Antti Knowles

PROBLEM SET 4

1. Let $f \in C^{k+1}$ in a neighborhood of $a \in \mathbb{R}^n$. In class we saw that f can be expressed using its Taylor series as

$$f(a+h) = P_k(h) + R_k(h) \tag{1}$$

where

$$P_k(h) := \sum_{r=0}^k \frac{1}{r!} D_h^r f(a), \qquad R_k(h) = \frac{1}{(k+1)!} D_h^{k+1} f(\xi),$$

for some ξ in the segment from a to a + h.

- (i) Find the Taylor polynomial of degree 2 (i.e. $P_2(h)$) of the function $f(x,y) = \sin(xy)e^{x^2}$ at a = (0,0).
- (ii) Find the Taylor polynomial of degree 3 (i.e. $P_3(h)$) of the function $f(x,y) = x^y$ at a = (1,1).
- (iii) Find the Taylor series (i.e. $\lim_{k\to\infty} P_k(h)$) of the function $f(x,y)=\sqrt{1+x^2+y^2}$ at a=(0,0).
- 2. Locate the critical points and extrema of the functions

(i)
$$f(x,y) = x^3 + y^3 + 3xy$$
, (ii) $f(x,y,z) = x^2 + y^2 + z^2 - 2xyz$.

3. (i) In class we proved that $R_k(h) = O(|h|^{k+1})$, so that for $f \in C^{k+1}$ we have

$$f(a+h) = P_k(h) + O(|h|^{k+1}).$$
 (2)

In some applications we want to make the weaker assumption $f \in C^k$. Prove, using Taylor's theorem, that if $f \in C^k$ then

$$f(a+h) = P_k(h) + o(|h|^k).$$
 (3)

Note that (3) is weaker than (2), but for almost all practical purposes just as useful; its advantage is that it holds under the weaker assumption $f \in C^k$ rather than $f \in C^{k+1}$. Hints. Start from (1) with k replaced by k-1. You have to prove that

$$R_{k-1}(h) = \frac{1}{k!} D_h^k f(a) + o(|h|^k).$$

(ii) Use (i) to prove the following, stronger, version of the criterion for locating local extrema proved in class.

Suppose that f is C^2 in a neighborhood of $a \in \mathbb{R}^n$, and that a is a critical point of f. Then

- f''(a) positive definite \implies a is a local minimum of f
- f''(a) negative definite \implies a is a local maximum of f
 - f''(a) nondefinite \implies a is neither a local maximum nor a local minimum.

(Note that this result is stronger because we only require that f be C^2 and not C^3 .)

Hints. The proof is analogous to the one given in class, except that you should use (3) instead of (2).

4. Let $A, B \subset \mathbb{R}^n$ be open, and suppose that $f: A \to B$ such that both f and f^{-1} are C^1 . Prove that f'(a) is an invertible matrix for all $a \in A$, and that for all $a \in A$ with b := f(a) we have

$$(f^{-1})'(b) = (f'(a))^{-1}.$$

(In words: the derivative of the inverse is the inverse of the derivative.)

- **5.** Prove that the function f(x) := |x| is differentiable on $\mathbb{R}^n \setminus \{0\}$ and find $\nabla f(x)$.
- **6.** The Laplacian Δ is defined by

$$\Delta f(a) := \operatorname{Tr} f''(a) = \sum_{i=1}^{n} D_i^2 f(a).$$

It appears in just about every equation describing a law of nature, such as heat conduction, motion of waves, motion of quantum-mechanical particles, electric and magnetic fields, and Brownian motion.

(i) Prove that Δ is *invariant under rotations* in the following sense. Let v_1, \ldots, v_n be an orthonormal basis of \mathbb{R}^n . Then

$$\Delta f = \sum_{i=1}^{n} D_{v_i}^2 f$$

for all $f \in C^2(\mathbb{R}^n)$.

(ii) Prove that for $f,g\in C^2$ we have

$$\Delta(fg) \; = \; f\Delta g + 2\langle \nabla f \, , \nabla g \rangle + g\Delta f \, .$$

(iii) Let n=2 and consider the polar coordinates defined in class:

$$T: [0, \infty) \times [0, 2\pi) \to \mathbb{R}^2, \qquad T(r, \theta) := \begin{pmatrix} r \cos \theta \\ r \sin \theta \end{pmatrix}.$$

Express Δ in polar coordinates. More precisely, let $f \in C^2(\mathbb{R}^2)$ and define $g := f \circ T$. Show that for r > 0 we have

$$(\Delta f)(T(r,\theta)) = \left(D_r^2 g + \frac{1}{r^2} D_\theta^2 g + \frac{1}{r} D_r g\right)(r,\theta).$$

Hints. You will have to use the chain rule. One way to start is to compute D_rg and $D_{\theta}g$; you can differentiate these expressions again to obtain D_r^2g and D_{θ}^2g .

(iv) Suppose that $f: \mathbb{R}^n \to R$ is invariant under rotations in the sense that f(x) = g(|x|) for some $g \in C^2((0,\infty))$. Prove that

$$\Delta f(x) = g''(|x|) + \frac{n-1}{|x|}g'(|x|).$$

(v) Let

$$\psi: [0,\infty) \times \mathbb{R}^n \to \mathbb{R}$$
, $\psi(t,x) := \frac{1}{t^{n/2}} \exp\left(-\frac{|x|^2}{4t}\right)$.

Using (iv) show that

$$D_t \psi(t, x) = \Delta \psi(t, x) \qquad (t > 0, x \in \mathbb{R}^n), \tag{4}$$

where Δ is the Laplacian in the variables x_1, \ldots, x_n (and not t).

The equation (4) is call the *heat equation* and its solutions, such as ψ , model the diffusion of heat through a conducting medium. The solution ψ given above corresponds to a single heat source at x=0 when t=0, which diffuses through space as t increases. (If you want, you can try to plot ψ for n=1 for various values of t>0 to get an idea of how the heat distribution evolves in time.)

(vi) Let c>0 and fix a unit vector $v\in\mathbb{R}^n$ and $f\in C^2(\mathbb{R})$. Show that

$$\psi: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R} \,, \qquad \psi(t,x) \; := \; f\big(\langle x,v \rangle - ct\big)$$

satisfies the wave equation

$$D_t^2 \psi(t, x) = c^2 \Delta \psi(t, x). \tag{5}$$

(As above, the Laplacian Δ only acts on x_1, \ldots, x_n and not t.) As its name implies, solutions ψ of the wave equation describe the motion of waves (e.g. sound, light) through space; the speed of the waves (speed of sound or speed of light) is c.

7. It is of fundamental importance for many arguments in analysis that there exists a C^{∞} function which is positive inside the unit ball and zero outside. An example is

$$f(x) := \begin{cases} \exp(1/(|x|^2 - 1)) & \text{if } |x| < 1 \\ 0 & \text{if } |x| \ge 1. \end{cases}$$

Prove that $f \in C^{\infty}(\mathbb{R}^n)$.

Hints. Write $f(x) = g(|x|^2)$ with some function (that you should determine) $g : \mathbb{R} \to \mathbb{R}$. Show that it suffices to show that $g \in C^{\infty}(\mathbb{R})$. In order to prove that $g \in C^{\infty}(\mathbb{R})$, the following fact should be helpful: for all $k \in \mathbb{N}$ and r < 1, we have

$$g^{(k)}(r) = \frac{P_k(r)}{Q_k(r)} \exp\left(\frac{1}{r-1}\right),\,$$

where P_k and Q_k are polynomials. Prove this fact by induction on k.

- **8.** A linear transformation $A: \mathbb{R}^n \to \mathbb{R}^m$ is called *conformal* if there is a number $\rho > 0$ such that $A^T A = \rho \mathbb{1}$.
 - (i) Prove that a conformal transformation preserves angles in the sense that, for any nonzero $v, w \in \mathbb{R}^n$, the vectors Av and Aw are also nonzero and the angle between v and w is the same as the angle between Av and Aw.
 - (ii)* Prove that a linear map that preserves angles in the sense given in (i) is conformal. (From (i) and (ii) we deduce that a linear map is conformal if and only if it preserves angles.)
 - (iii) A mapping $f \in C^1(A; \mathbb{R}^m)$, where $A \subset \mathbb{R}^n$, is called *conformal* at $a \in A$ if f'(a) is conformal.

Let γ_1 and γ_2 be two C^1 curves in \mathbb{R}^n that intersect: $\gamma_1(0) = \gamma_2(0)$. Suppose that f is conformal at this point of intersection. Prove that the angle between the tangents of γ_1 and γ_2 at time 0 is the same as the angle between the tangents of $f \circ \gamma_1$ and $f \circ \gamma_2$ at time 0.

(iv)* The stereographic projection is a projection used to map the unit sphere in \mathbb{R}^{n+1} to \mathbb{R}^n . It is defined as follows. Let

$$\mathbb{S}^n := \left\{ u \in \mathbb{R}^{n+1} : |u| = 1 \right\}$$

be the unit sphere, and let $p := (0, ..., 0, 1)^T$ be the "north pole" of the sphere. For $x \in \mathbb{R}^n$, let l(x) be the line in \mathbb{R}^{n+1} that passes through the two points (x,0) and p. Draw a sketch of \mathbb{R}^{n+1} , along with \mathbb{S}^n and l(x). (You will have to take n = 1 or n = 2 for the sketch).

Show that l(x) intersects \mathbb{S}^n at a unique point, which we denote by S(x). Show also that S is a bijection between \mathbb{R}^n and $\mathbb{S}^n \setminus \{p\}$. It is called the *stereographic projection*.

Prove that

$$S(x) = \frac{1}{1+|x|^2} \binom{2x}{|x|^2-1} .$$

Finally, prove that S is conformal.

This fact is of great interest to cartographers: using S we may represent the surface of the earth on a flat piece of paper in such a way that all angles are preserved. The downside is that areas are not preserved; in fact, there is no projection that preserves both angles and areas (this is a mathematical theorem). The stereographic projection is accurate near the "south pole" $(0, \ldots, 0, -1)^T$, and becomes increasingly distorted as one approaches the north pole p.

Due: Thursday, April 11, in class.