
Analysis 2 Antti Knowles

Problem Set 5

1. (i) Show that the mappings

f(x, y) ..= (ex + ey, ex − ey) , g(x, y) ..= (ex cos y, ex sin y)

are locally invertible around each point of R2.

(ii) Show that the equations

sin(y + x) + log(zx2) = 0 , ey+x + xz = 0

implicitly define (y, z) near (1, 1), as an explicit function of x near −1.

2. Consider the system of equations

x2 + uy + ev = 0

2x+ u2 − uv = 5 .

Show that (u, v) may be solved in terms of (x, y) in a neighborhood of the point (x, y) = (2, 5).
Show that the mapping (x, y) 7→ (u, v) is C1 and compute its derivative at (x, y) = (2, 5).

3. Let A be an m× n matrix. We define the matrix norm of A through

‖A‖ ..= sup
{
|Ax| .. |x| 6 1

}
.

(i) Prove that for all x ∈ Rn we have |Ax| 6 ‖A‖|x|.
(ii) Prove that ‖·‖ is a norm, i.e. that it satisfies the following axioms:

I ‖aA‖ = |a|‖A‖ for all a ∈ R;

I ‖A+B‖ 6 ‖A‖+ ‖B‖;
I if ‖A‖ = 0 then A = 0.

(iii) Prove that ‖AB‖ 6 ‖A‖‖B‖, where A is an k ×m matrix and B an m× n matrix.

(iv) Since the space of m × n matrices may be identified with Rm×n, the norm or distance
defined in class reads

|A| =

√√√√ m∑
i=1

n∑
j=1

A2
ij .

(This is sometimes called the Hilbert-Schmidt norm.)



Prove that
‖A‖ 6 |A| . (1)

Conclude that if A(x) is a continuous matrix-valued function, we have ‖A(x)−A(y)‖ → 0
as x→ y.

Hint. For (1), pick some x ∈ Rn and estimate |Ax|2 using Cauchy-Schwarz.

4. (i) Show that the rectangular box of maximal area that can be inscribed in the unit circle
is a square.

(ii) Find the dimensions of the box of maximal volume, whose edges are parallel to the
coordinate axes, which can be inscribed in the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1 .

5. Suppose that we have a probability distribution on the set {1, . . . , n}, i.e. a sequence p =
(p1, . . . , pn) of probabilities in the set Pn, where

Pn ..=

{
p ∈ (0, 1)n ..

n∑
i=1

pi = 1

}
.

A fundamental property of a probability distribution p is its entropy

S(p) ..= −
n∑
i=1

pi log pi .

(We extend the function x log x to 0 by continuity, so that 0 log 0 ..= 0.) The entropy of p
measures the disorder or lack of information in p.

(i) Using Lagrange multipliers, find the critical point p of S on the set Pn. Compute the
value of S at p.

(ii)* Prove that S reaches its maximum on Pn at p.

Hint. Prove by induction on n that the maximum of S on Pn \ Pn is log(n− 1).

(iii) In applications to statistical physics, each point of {1, . . . , n} represents a state of a
physical system with a given energy Ei. The energy of the probability distribution p is

H(p) ..=

n∑
i=1

piEi .

We now want to maximize the entropy S(p) over the set Pn, subject to the additional
constraint H(p) = E for some fixed E. (The energy of the system is fixed.) We require
E to satisfy miniEi < E < maxiE. (Why?) By the method of Lagrange multipliers,
prove that the unique critical point p of S in Pn ∩H−1({E}) satisfies

pi =
1

Z
e−βEi , Z ..=

n∑
i=1

e−βEi



for some parameter β chosen so that H(p) = E. (Why does such a β exist?) This
distribution is called the canonical or Gibbs distribution. The parameter β has the
physical meaning of inverse temperature: T = 1/β.

(iv)* Prove that S reaches its maximum on Pn ∩H−1({E}) at p from (iii).

6. (i) Let p1, . . . , pn be positive real numbers satisfying p1 + · · · + pn = 1, and define the
functions

ϕ(x) ..= p1x1 + · · ·+ pnxn − 1 , f(x) ..= xp11 · · ·x
pn
n .

Define the subset

M ..=
{
x ∈ Rn .. ϕ(x) = 0 and xi > 0 for all i

}
.

Show that f(x) > 0 in M and f(x) = 0 in M \ M . Conclude that f has a global
maximum in M .

(ii) Find the global maximum of f in M using Lagrange multipliers. Conclude that f(x) 6 1
in M .

(iii) Use (ii) to prove the inequality

ap11 · · · a
pn
n 6 p1a1 + · · ·+ pnan ,

where a1, . . . , an are positive real numbers. In the special case pi = 1/n for all i, this
inequality reduces to the famous fact that the geometric mean is less than or equal to
the arithmetic mean.

7. This problem is a digression on linear algebra and block matrices. Let A be an n×n matrix,
B an n ×m matrix, C an m × n matrix, and D an m ×m matrix. We can put all of these
matrices into a block matrix (

A B
C D

)
.

(i) Prove that

det

(
A 0
0 Im

)
= det(A) .

(ii) Using (i) and the fact that det(XY ) = det(X) det(Y ), prove that

det

(
A 0
0 D

)
= det(A) det(D) .

(iii) Prove that

det

(
In B
0 Im

)
= 1 .



(iv) Suppose that D is invertible. Prove that(
In −BD−1
0 Im

)(
A B
C D

)(
In 0

−D−1C Im

)
=

(
A−BD−1C 0

0 D

)
.

(v) Suppose that D is invertible. By combining, (i) – (iv), prove that

det

(
A B
C D

)
= det(A−BD−1C) det(D) .

(A special case of this formula was used in class in the proof of the implicit function
theorem.)

(vi) Now that you’re all warmed up with block matrices, prove the identity

det

[(
In B
−C Im

)(
In 0
C Im

)]
= det

[(
In 0
C Im

)(
In B
−C Im

)]
and use it to prove

det(In +BC) = det(Im + CB) .

This is one of the most useful identities in linear algebra, and its proof without block
matrices is much harder.

8. Recall that Newton’s method is an algorithm for finding zeros of a function f . It consists in
iterating the map

ϕ(x) ..= x− (f ′(x))−1f(x) .

Thus, we start with some given x0 and define x1 ..= ϕ(x0), x2 ..= ϕ(x1), etc.

(i) Suppose you are trying to find
√
a for some a > 0. This amounts to finding the positive

zero of the function f(x) = x2 − a. Derive an algorithm for finding
√
a using Newton’s

method. You should recover the Babylonian method given in class.

The rest of this problem is devoted to an analysis of the convergence of Newton’s method.
For simplicity, we work in one dimension, i.e. we set n = 1. Without loss of generality, we
assume that the zero of f we are interested in is at the origin: f(0) = 0. We shall show
that, assuming f ′(0) is invertible and f is C2 in a neighborhood of 0, the sequence (xk)k∈N
converges to 0 provided x0 is close enough to 0.

Let R > 0 and K > 1 and suppose that

∀x ∈ [−R,R] .. K−1 6 |f ′(x)| 6 K , |f ′′(x)| 6 K . (2)

(ii) We begin by estimating |xk+1 − xk| in terms of |xk − xk−1|. Suppose that xk, xk−1 ∈
[−R,R]. Prove that

|xk+1 − xk| 6
K2

2
|xk − xk−1|2 .

Hints. By definition, xk+1 − xk = −(f ′(xk))
−1f(xk). Use (2) to estimate (f ′(xk))

−1.
Then write xk in f(xk) as xk = xk−1 − (f ′(xk−1))

−1f(xk−1), and do a second-order
Taylor approximation of f around xk−1.



(iii) Prove that |x1 − x0| 6 K2|x0|.
(iv) Prove that if

|x0| 6
ε

K4

for some ε ∈ (0, 1), then

|xk+1 − xk| 6
1

K22k
ε2

k
6

ε

K2

(
ε

2

)k
.

Conclude, using a telescopic sum, that if x0 ∈ [−r, r] and

r 6
ε

K4
, R > ε

(
1

K4
+

2

K2

)
, (3)

then the sequence (xk)k∈N converges in [−R,R]. Show that this limit is a fixed point of
ϕ, and hence 0.

Hints. Proceed as in the proof of Banach’s fixed point theorem: Prove first that (xk)k∈N
is a Cauchy sequence by using the telescopig identity xl − xk =

∑l−1
i=k(xi+1 − xi), where

l > k. To show that the limit is a fixed point of ϕ, take the limit in xk+1 = ϕ(xk) and
use that ϕ is continuous.

(v)* Suppose that f ′(0) 6= 0. Show that there exist K > 0 and 0 < r < R such that (2) and
(3) are satisfied. This shows that Newton’s method will find the zero of f at 0 provided
one starts sufficiently close to it (in this case in the interval [−r, r]).

9.* Prove that if f ∈ Ck satisfies the assumptions of the inverse function theorem, then the local
inverse f−1 is also Ck. Formulate and prove a similar statement for the implicit function
theorem.

Due: Thursday, April 25, in class.


