Analysis 2 Antti Knowles

PROBLEM SET 6

Recall that a subset $M \subset \mathbb{R}^n$ is called a k-dimensional C^l -manifold (a k-dim. C^l -MF) if every $p \in M$ has an open neighborhood $U \ni p$ and a diffeomorphism $\Psi \in C^l(U; \mathbb{R}^n)$ from U onto $V := \Psi(U)$, such that

$$\Psi(U \cap M) = V \cap (\mathbb{R}^k \times \{0\}).$$

In class we saw two ways of generating a manifold.

(a) Using a graph (Example 15). Let $W \subset \mathbb{R}^k$ be open and $g \in C^l(W; \mathbb{R}^{n-k})$. Then the graph of g, defined as

$$M = G(g) := \{(x, g(x)) : x \in W\},\$$

is a k-dim. C^l -MF.

- (b) As the preimage of a regular value (Example 16). Let $\varphi \in C^l(U; \mathbb{R}^{n-k})$ for some open set $U \subset \mathbb{R}^n$. Then the set $M := \varphi^{-1}(\{0\})$ is a k-dim. C^l -MF if 0 is a regular value of φ (i.e. if rank $\varphi'(p) = n k$ for all $p \in M$).
- 1. In class we saw that the tangent space of a graph M = G(g) as in (a) is given by $T_pM = \Phi'(x)\mathbb{R}^k$, where $\Phi(x) := (x, g(x))$ and $p = \Phi(x)$. Consider the special case k = 1 and n = 2, and verify that this expression for T_pM coincides with the expression for the tangent line, translated to pass through the origin, of the graph y = g(x) that you learned in high school or in calculus.
- **2.** Find the tangent space of the graph of the function $g(x,y) = x^2 + y^2 \cos(x)$.
- 3. Let $M = \varphi^{-1}(\{0\})$ be the preimage of a regular value of $\varphi \in C^1$, as in (b) above. Prove the following fact mentioned but not proved in class: the tangent space T_pM is

$$T_p M = \operatorname{null} \varphi'(p)$$
.

Hints. Using the implicit function theorem, express M locally as a graph G(g). Differentiate the relation $\varphi(\Phi(x)) = 0$, where $\Phi(x) := (x, g(x))$, and use what you know about the tangent space of a graph (see the first sentence of Problem 1) to show that $T_pM \subset \text{null } \varphi'(p)$. To conclude, find the dimensions of the spaces T_pM and $\text{null } \varphi'(p)$.

4. (i) A torus is a doughnut-shaped surface in \mathbb{R}^3 that can be constructed as follows. Let a > b > 0 and consider the circle \mathcal{C} of radius a in the xy-plane. By definition, the torus $T_{a,b}$ is the set of points (x,y,z) in \mathbb{R}^3 that lie at a distance b from the circle \mathcal{C} . Draw a sketch of $T_{a,b}$ and prove that it is a 2-dim. C^{∞} -MF.

Hint. To prove that $T_{a,b}$ is a manifold, it is easiest to exhibit it as the preimage of a regular value of a smooth function φ . To find such a φ , introduce the radius in the xy-plane, $r := \sqrt{x^2 + y^2}$, and argue geometrically in the zr-plane.

- (ii) Find the tangent space of $T_{a,b}$ at a point $p = (x, y, z) \in T_{a,b}$.
- **5.** The special linear group is defined as

$$\mathrm{SL}(n) := \left\{ X \in \mathbb{R}^{n \times n} : \det X = 1 \right\}.$$

- (i) Prove that SL(n) is an $(n^2 1)$ -dim. C^{∞} -MF in the space of $n \times n$ matrices. Hint. According to (b) above, you have to prove that the derivative of $\varphi(X) := \det X$ has maximal rank, i.e. rank one. To differentiate the determinant, recall Problem 3.11(i).
- (ii) Show that the tangent space $T_{I_n}SL(n)$ is the space of matrices whose trace is zero. *Hint*. Use Problem 3.
- **6.** The *orthogonal group* is defined as

$$O(n) := \{X \in \mathbb{R}^{n \times n} : X^T X = I_n \}.$$

(i) Show that O(n) is an $\frac{n(n-1)}{2}$ -dim. C^{∞} -MF in the space of $n \times n$ matrices. Hints. Exhibit O(n) as the preimage of 0 of the function $\varphi(X) := X^T X - I_n$. Here $\varphi : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}_{\text{sym}}$, where $\mathbb{R}^{n \times n}_{\text{sym}}$ is the space of symmetric $n \times n$ matrices. (Choosing this target space for φ is very important; otherwise you will not be able to satisfy the maximal rank condition.)

Compute the derivative $\varphi'(A)H$. To show that it has maximal rank, you have to show that the equation $\varphi'(A)H = S$ has a solution H for each $A \in O(n)$ and $S \in \mathbb{R}^{n \times n}_{svm}$.

You will also need to compute the dimension of $\mathbb{R}_{\text{sym}}^{n \times n}$.

- (ii) Show that the tangent space $T_{I_n}O(n)$ is the space of antisymmetric matrices.
- 7.* Fix h>0 and define the function $f:U\to\mathbb{R}^3$, where $U:=(0,\infty)\times\mathbb{R}$ and

$$f(r,\theta) := (r\cos\theta, r\sin\theta, h\theta).$$

Sketch the set M := f(U) and prove that it is a 2-dim. C^{∞} -MF.

Due: Thursday, May 9, in class.