
167 Midterm 1 Spring Quarter Solutions1

1. Question 1

TRUE/FALSE
(a) In the game of chess, it is known that both players can force at least a draw.
FALSE. It could be the case that the white player (or the black player) has a winning

strategy. We just don’t know which of these three cases occurs (though we know one of them
occurs).

(b) In the game of Chomp, on any starting game board of any size (finite or infinite), the
first player has a winning strategy.

FALSE. On a 1 × 1 board, the first player loses automatically. Also, on a 2 ×∞ board,
the second player has a winning strategy (as discussed on the homework).

(c) Suppose the game of Nim begins with one pile of 9999 chips and one pile of 10000
chips. Then the first player has a winning strategy.

TRUE. The first move is to take one chip from the pile of 10000, resulting in the game
position (9999, 9999). No matter what the other player does, the first player can then force
both piles to have an equal number of chips, resulting in a win for the first player (since
eventually the first player encounters a single pile of chips).

(d) Suppose the game of Nim begins with the game position (1, 2, 3). Then the first player
has a winning strategy.

FALSE. The nim sum of the piles 1 ⊕ 2 ⊕ 3 is 0. So, the second player has a winning
strategy, not the first, by Bouton’s Theorem.

(e) Let A be a real 2 × 2 matrix. Then the the von Neumann Minimax Theorem can be
written as follows.

max
a,b∈[0,1]

min
c,d∈[0,1]

(a, b)A

(
c
d

)
= min

c,d∈[0,1]
max

a,b∈[0,1]
(a, b)A

(
c
d

)
.

FALSE. The Theorem assumes a + b = 1 and c + d = 1 additionally, that is:

max
a∈[0,1]

min
c∈[0,1]

(a, 1− a)A

(
c

1− c

)
= min

c,d∈[0,1]
max

a,b∈[0,1]
(a, 1− a)A

(
c

1− c

)
.

2. Question 2

Describe the optimal strategies for both players for the two-person zero-sum game de-
scribed by the payoff matrix. That is, at the optimal strategy, with what probability does
player I play C, with what probability does player I play D, with what probability does
player II play A, with what probability does player II play B?

Player II
A B

C 0 1

P
la

ye
r
I

D 2 0

Prove that these strategies are optimal.
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Solution. Let P denote the payoff matrix. By the Minimax Theorem and by definition
of optimal strategy, the optimal strategies are vectors achieving maxx∈∆2 miny∈∆2 x

TPy =
miny∈∆2 maxx∈∆2 x

TPy. For example, the function x 7→ miny∈∆2 x
TPy achieves its maximum

at an optimal strategy vector x ∈ ∆2. Write x = (a, 1−a) and y = (b, 1−b) where a, b ∈ [0, 1].
Then xTPy = (a, 1− a)T (1− b, 2b) = a(1− b) + 2(1− a)b = a− 3ab + 2b. So,

max
x∈∆2

min
y∈∆2

xTPy = max
a∈[0,1]

min
b∈[0,1]

(a− 3ab + 2b).

Let f(a, b) = a − 3ab + 2b. Then ∇f(a, b) = (1 − 3b,−3a + 2). So, if a > 1/3, we have
∂f/∂b < 0. So, if a > 1/3, miny∈∆2 x

TPy is achieved at b = 1. And if a ≤ 1/3, we have
∂f/∂b ≥ 0. So, if a ≤ 1/3, miny∈∆2 x

TPy is achieved at b = 0. So, for any a ∈ [0, 1], we
have miny∈∆2 x

TPy = min(−2a + 2, a). Therefore,

max
x∈∆2

min
y∈∆2

xTPy = max
a∈[0,1]

min(2(1− a), a) = 2/3.

And this maximum is achieved only when a = 2/3. So, the only optimal strategy for Player I
is x = (2/3, 1/3). Also, ∂f/∂a = 1−3b. So, if b > 1/3, ∂f/∂a < 0, and maxa∈[0,1](a−3ab+2b)
is achieved at a = 0. And if b ≤ 1/3, then ∂f/∂a ≥ 0, so maxa∈[0,1](a− 3ab+ 2b) is achieved
at a = 1. So,

min
y∈∆2

max
x∈∆2

xTPy = min
b∈[0,1]

max
a∈[0,1]

(a− 3ab + 2b) = min
b∈[0,1]

max(2b, 1− b) = 2/3.

And this minimum is achieved only when b = 1/3. So, the only optimal strategy for Player II
is y = (1/3, 2/3). That is, player II will play A with probability 1/3 and B with probability
2/3, and player I will play C with probability 2/3, and D with probability 1/3.

3. Question 3

Let Y be a random variable such that: Y = 1 with probability 1/2, Y = 4 with probability
1/2.

Let Z be a random variable such that: Z = 2 with probability 1/2 and Z = 3 with
probability 1/2. Assume that Z and Y are independent. What is the probability that:
Y = 4 and Z = 2? What is the expected value of Y · Z?
Solution. We know Y = 4 and Z = 2 with probability equal to: the probability Y = 4,

multiplied by the probability Z = 2. So, the probability Y = 4 and Z = 2 is (1/2) · (1/2) =
1/4, since Y and Z are independent, so these probabilities multiply.

Using similar reasoning, the expected value of Y ·Z is (1/4)(1 · 2) + (1/4)(1 · 3) + (1/4)(4 ·
2) + (1/4)(4 · 3) = (1/4)(2 + 3 + 8 + 12) = 25/4.

4. Question 4

Let K ⊆ R2 be the following set:

K = {(x, y) ∈ R2 : x + y ≥ 1, −x− y ≥ −2, −x + 2y ≥ 0, 2x− y ≥ 0}.
Prove that K is convex. Then, find a hyperplane which separates K from the origin (0, 0).
Solution. Let (a, b), (c, d) ∈ K. Let t ∈ (0, 1). We are required to show that t(a, b) + (1−

t)(c, d) ∈ K. Since a + b ≥ 1, −a − b ≥ −2, −a + 2b ≥ 0, 2a − b ≥ 0, and since t > 0, we
get t(a + b) ≥ t, t(−a− b) ≥ −2t, t(−a + 2b) ≥ 0, t(2a− b) ≥ 0. Similarly, since c + d ≥ 1,
−c − d ≥ −2, −c + 2d ≥ 0, 2c − d ≥ 0, and since 1 − t > 0, we get (1 − t)(c + d) ≥ 1 − t,
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(1 − t)(−c − d) ≥ −2(1 − t), (1 − t)(−c + 2d) ≥ 0, (1 − t)(2c − d) ≥ 0. So, adding up the
respective inequalities, we get

t(a + b) + (1− t)(c + d) ≥ 1, t(−a− b) + (1− t)(−c− d) ≥ −2,

t(−a + 2b) + (1− t)(−c + 2d) ≥ 0, t(2a− b) + (1− t)(2c− d) ≥ 0.

That is, by definition of K, we have t(a, b) + (1− t)(c, d) ∈ K, as desired.
Now, let z = (1, 1) ∈ R2. Since x+ y ≥ 1 for any (x, y) ∈ K, we have zT (x, y) = x+ y ≥ 1

for any (x, y) ∈ K. That is, the line x + y = 1/2 separates K from the origin (0, 0), since
zT (x, y) > 1/2 > 0 for all (x, y) ∈ K.

5. Question 5

Let A,B ⊆ R2 with A ∩ B = ∅. We say that A,B can be separated if the following
property holds. There exists z ∈ R2 and there exists c ∈ R such that zTa < c < zT b for all
a ∈ A and for all b ∈ B. We say that A,B cannot be separated if it does not hold that A,B
can be separated.

Give an example of two closed, convex sets A,B ⊆ R2 with A ∩ B = ∅, such that A,B
cannot be separated. (As usual, you have to justify your answer. Also, all of the required
conditions on A,B must be satisfied. Lastly, drawing a picture might be helpful, but it will
not constitute a complete answer.)

Solution. There are several examples that work. Here is one example.
Let A = {(x, y) ∈ R2 : y ≤ 0} and let B = {(x, y) ∈ R2 : y ≥ e−x}. Then A ∩ B = ∅ since

y > 0 whenever (x, y) ∈ B, whereas y < 0 whenever (x, y) ∈ A. Now, let z ∈ R2. Since
zTa = zT b holds when z = 0, assume that z 6= 0. If x = 0 then y 6= 0, and since (1, 0) ∈ A
we have zT (1, 0) = 0, and since (t, e−t) ∈ B for any t > 0, we have zT (t, e−t) = ye−t. Letting
t → ∞, then zT (t, e−t) decreases to 0. That is, there does not exist a c ∈ R such that
zTa < c < zT b for all a ∈ A and for all b ∈ B. Now, if x 6= 0, then since (t, 0) ∈ A for any
t ∈ R, we have zT (t, 0) = xt. So, as t varies over all t ∈ R, zT (t, 0) can take any real number
value. So, there does not exist c ∈ R such that zTa < c for all a ∈ A. In any case, z does
not exist satisfying the condition for A,B being separated.

Lastly, note that A is closed and convex, since it is a closed half plane. Also B is closed
since limits preserve nonstrict inequalities (that is, the inequality y ≥ e−x is preserved by
taking a limit). And B is convex since if (v, w), (r, u) ∈ B, then w ≥ e−v, u ≥ e−r, and
we are required to show: for any 0 < t < 1, (tw + (1 − t)u) ≥ e−(tv+(1−t)r). To prove this
inequality, it then suffices to show that te−v + (1 − t)e−r ≥ e−(tv+(1−t)r). Since the function
x 7→ e−x has strictly positive second derivative for any x ∈ R, Taylor’s Theorem implies
that, if b = tv + (1 − t)r, and if h(b) = e−b, h : R → R, then h(b + x) ≥ h(b) + h′(b)x.
Choosing x = −tv + tr gives h(r) ≥ h(b) + h′(b)t(r− v). Choosing x = −(1− t)r + (1− t)v
gives h(v) ≥ h(b) + h′(b)(1 − t)(v − r). Adding these two inequalities, we get the required
inequality:

te−v + (1− t)e−r ≥ h(b) + h′(b)t(1− t)(v − r) + h′(b)t(1− t)(r − v) = h(b).
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