
541B Final Solutions1

1. Question 1

SupposeX is a binomial distributed random variable with parameters 2 and θ ∈ {1/4, 3/4}.
(That is, X is the number of heads that result from flipping two coins, where each coin has
probability θ of landing heads.)
We want to test the hypothesis H0 that θ = 1/4 versus the hypothesis H1 that θ = 3/4.
Let T be the set of hypothesis tests with significance level at most 1/10.

(Recall that the significance level of a hypothesis test ϕ : R → [0, 1] is supθ∈Θ0
Eθϕ(X).)

Find a uniformly most powerful (UMP) class T hypothesis test ϕ : R → [0, 1].
Compute all constants that appear in the definition of ϕ. Justify your answer.

Solution. We first compute

f3/4(0)

f1/4(0)
=

1

9
,

f3/4(1)

f1/4(1)
= 1,

f3/4(2)

f1/4(2)
= 9.

The Neyman-Pearson Lemma says that a UMP test for the class of tests with an upper
bound on the significance level must be a likelihood ratio test with significance level equal
to 1/10. That is, there is some k > 0 and γ ∈ [0, 1] such that the following hypothesis test
is UMP class T .

ϕ(x) :=


1 , if fθ1(x) > kfθ0(x)

0 , if fθ1(x) < kfθ0(x)

γ , if fθ1(x) = kfθ0(x).

After examining the likelihood ratios, we decide to choose k = 1, so that

ϕ(x) :=


1 , if fθ1(x) > fθ0(x)

0 , if fθ1(x) < fθ0(x)

γ , if fθ1(x) = fθ0(x)

=


1 , ifx = 2

0 , ifx = 0

γ , if x = 1.

Then Eθ0ϕ(X) = γPθ0(X = 1)+Pθ0(X = 2) = γP1/4(X = 1)+P1/4(X = 2) = (3/8)γ+1/16.
Since this quantity is equal to 1/10 by assumption, we choose γ := 1/10. That is, our UMP
test is

ϕ(x) :=


1 , ifx = 2

0 , ifx = 0

1/10 , if x = 1.

2. Question 2

Let X1, . . . , Xn be a random sample from a Gaussian random variable with unknown mean
µ ∈ R variance one.
Fix µ0 ∈ R. Suppose we want to test that hypothesisH0 that µ = µ0 versus the alternative

H1 that µ ̸= µ0.

• Explicitly describe the rejection region of the generalized likelihood ratio test for this
hypothesis.

• Give an explicit formula for the p-value of this hypothesis test.
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Solution. (This was Example 4.3 in the notes)

3. Question 3

Let P be the transition matrix of a finite Markov chain.
All eigenvectors and eigenvalues discussed below are left eigenvectors and left eigenvalues.

• Let λ ∈ C be an eigenvalue of P . Show that |λ| ≤ 1.
• Given an example of a transition matrix P with at least one eigenvalue λ such that
λ is not a real number.

• If P is irreducible and aperiodic, show that −1 is not an eigenvalue of P .
• If P is reversible, show that all eigenvalues of P are real.
(Hint: show that ⟨f, Pg⟩ = ⟨Pf, g⟩, where ⟨f, g⟩ :=

∑
x∈Ω f(x)g(x)π(x) for all

f, g : Ω → R, where π is stationary. To define Pf , we think of f as a column
vector, so the matrix P applied to f is well-defined. You can then freely use the
spectral theorem for self-adjoint matrices, which implies that all eigenvalues of a self
adjoint matrix are real. Also, as a hint for the next part of the problem, P has an
orthonormal basis of eigenvectors.)

• Let γ := 1−max{|λ| : λ is an eigenvalue of P and λ ̸= 1}. Suppose P is irreducible
and reversible with stationary distribution π. Show that, for all n ≥ 1 and for all
f : Ω → R, we have

Varπ(P
nf) ≤ (1− γ)2nVarπ(f).

Here Varπ(f) := Eπ(f − Eπf)
2 and Eπf =

∑
x∈Ω f(x)π(x).

(You don’t need to show this, but this inequality leads to a bound on the mixing
time of a Markov Chain in terms of γ.)

Solution. Let v ∈ Rn ∖ {0} be a left eigenvector of P with eigenvalue λ ∈ C. Denote
∥v∥1 :=

∑n
i=1 |vi|. Then

|λ| ∥v∥1 = ∥vP∥1 =
n∑

j=1

∣∣∣∣∣
n∑

i=1

viPij

∣∣∣∣∣ ≤
n∑

j=1

n∑
i=1

|vi|Pij.

Using
∑n

j=1 Pij = 1 (by definition of a transition matrix P ) we conclude that |λ| ∥v∥1 ≤ ∥v∥1.
Since v ̸= 0, we conclude that |λ| ≤ 1.

Let P :=

0 1 0
0 0 1
1 0 0

. Then P has eigenvalues λ satisfying λ3 = 1, i.e. e2πi/3 /∈ R is an

eigenvalue of P .
If P is irreducible and aperiodic, then −1 cannot be an eigenvalue of P , since if −1 were

an eigenvalue of P , it would contradict the Convergence Theorem 9.72. (If π is the unique
stationary distribution, and if −1 is an eigenvalue with eigenvector v, then vP 2n = v, which
does not converge to π as n → ∞, since v is not a multiple of π, since they each have different
eigenvalues.)

The hint implies that all eigenvalues of P are real when P is reversible.
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Let v1, . . . , vn ∈ Rn be an orthonormal set of eigenvectors of P with eigenvalues 1 = λ1 ≥
λ2 ≥ · · · ≥ λn ≥ −1. Let f ∈ Rn. Then f =

∑n
i=1⟨f, vi⟩πvi, and by definition of P we have

P nf =
n∑

i=1

⟨f, vi⟩πλn
i vi.

Varπ(P
nf) =

n∑
i=2

⟨f, vi⟩2πλ2n
i

Varπ(f) =
n∑

i=2

⟨f, vi⟩2π (∗)

Therefore,

Varπ(P
nf) =

n∑
i=2

⟨f, vi⟩2πλ2n
i ≤ max

2≤j≤n
λ2n
j

n∑
i=2

⟨f, vi⟩2π
(∗)
= (1− γ)2nVarπ(f).

4. Question 4

Suppose you can freely sample any number of i.i.d. Gaussian random variables with mean
zero and variance one (on a computer).

Give an MCMC algorithm for estimating the integral∫ ∞

−∞
e−x2−x4−x8

ex
dx

α
, (∗)

where α :=
∫∞
−∞ e−x2−x4−x8

dx is an unknown quantity. (That is, you should not need to
estimate α at all, in order to estimate the integral (∗).)

(Hint: Even though we didn’t cover a continuous version of MCMC, all random variables
on a computer are discrete, so the discrete versions of MCMC we dealt with should be
sufficient to do this problem.)

(Hint: Consider approximating the integral by a Riemann sum, or something similar to
that.)

Solution 1. Let Ω ⊆ R be a finite, discrete set. For any x ∈ Ω, let π(x) := e−x2−x4−x8∑
y∈Ω e−y2−y4−y8

.

Then π(x) > 0 for all x ∈ Ω and
∑

x∈Ω π(x) = 1. We are given the |Ω|×|Ω| transition matrix
Q, which corresponds to sampling from a mean zero variance one Gaussian, i.e. Q(x, y) is

approximately e−(x−y)2/2/z, where z is an appropriate constant. The Metropolis Algorithm
9.80 in the notes then gives us a transition matrix P with stationary distribution π. Impor-
tantly, since P is a function of π(x)/π(y), the definition of P does not require computing the

constant
∑

y∈Ω e−y2−y4−y8 . Also, by definition of P,Q, we see that P (x, y) > 0 for all x, y ∈ Ω,
so that P is irreducible, and π is the unique stationary distribution of P . Likewise, P is
aperiodic, so the convergence theorem implies that maxx∈Ω

∑
y∈Ω |P n(x, y)− π(y)| ≤ Cαn

for some 0 < α < 1.
Let X1, X2, . . . be samples from this Markov Chain. Define Yn := 1

n

∑n
k=1 e

Xk . Let T

be the first time that X1, X2, . . . has a repeated value, and similarly let T (j) be the jth

time the Markov Chain has a repeated value. The Strong Markov Property implies that∑T−1
i=1 eXi ,

∑T (2)−1
i=T eXi , . . . are i.i.d. random variables, so the Strong Law of Large Numbers

implies that their average converges to their expected value as time goes to infinity.
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Solution 2. You could appeal directly to Corollary 6.28 or Corollary 6.26 or Theorem
6.25 in the Robert and Casella book, which considers MCMC on infinite state spaces (in
this case, using the state space Ω = R). Theorem 6.25 requires checking that the Markov
Chain is irreducible (on an infinite state space), which follows since the Gaussian density is
positive everywhere. Similarly, Corollaries 6.26 and 6.28 require checking conditions about
the conditional density of the Markov chain.

5. Question 5

Give an example of a Markov Chain that is not reversible.
Prove your assertion.

Solution. In the previous question, we showed that the transition matrix P :=

0 1 0
0 0 1
1 0 0


has at least one non-real eigenvalue. We also showed that reversible Markov chains have all
real eigenvalues. It follows that P is not reversible.

6. Question 6

Give an example of a transition matrix P for a finite Markov Chain such that:

• The Markov Chain is reversible.
• There is a stationary distribution π that does not satisfy the detailed balance con-
dition.

Prove your assertions.
Solution. Consider

P =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 .

We observe that π′ := (1, 0, 0, 0) satisfies the detailed balance condition, so P is reversible.
(π(1)P (1, y) = 0 unless y = 1, and π(y)P (y, 1) = 0 unless y = 1, so π(1)P (1, y) =
π(y)P (y, 1) for all y ∈ {1, 2, 3, 4}. Also, if x ̸= 1, then π(x)P (x, y) = 0 by definition of
π, and π(y)P (y, x) = 0 since P (1, x) = 0 when x ̸= 1 and π(y) = 0 when y ̸= 1. So, in any
case, π(x)P (x, y) = π(y)P (y, x).)

However, π = (0, 1/3, 1/3, 1/3) is also a stationary distribution that does not satisfy the
detailed balance condition. (If it did, then the transition matrix from Question 5 would be
reversible, but we showed it was not.)
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